首页> 外文期刊>Applied Microbiology >Tuning the Specificity of the Recombinant Multicomponent Toluene o-Xylene Monooxygenase from Pseudomonas sp. Strain OX1 for the Biosynthesis of Tyrosol from 2-Phenylethanol
【24h】

Tuning the Specificity of the Recombinant Multicomponent Toluene o-Xylene Monooxygenase from Pseudomonas sp. Strain OX1 for the Biosynthesis of Tyrosol from 2-Phenylethanol

机译:调整假单胞菌sp。的重组多组分甲苯邻二甲苯单加氧酶的特异性。 OX1菌株用于2-苯基乙醇生物合成酪醇

获取原文
获取外文期刊封面目录资料

摘要

Biocatalysis is today a standard technology for the industrial production of several chemicals, and the number of biotransformation processes running on a commercial scale is constantly increasing. Among biocatalysts, bacterial multicomponent monooxygenases (BMMs), a diverse group of nonheme diiron enzymes that activate dioxygen, are of primary interest due to their ability to catalyze a variety of complex oxidations, including reactions of mono- and dihydroxylation of phenolic compounds. In recent years, both directed evolution and rational design have been successfully used to identify the molecular determinants responsible for BMM regioselectivity and to improve their activity toward natural and nonnatural substrates. Toluene o -xylene monooxygenase (ToMO) is a BMM isolated from Pseudomonas sp. strain OX1 which hydroxylates a wide spectrum of aromatic compounds. In this work we investigate the use of recombinant ToMO for the biosynthesis in recombinant cells of Escherichia coli strain JM109 of 4-hydroxyphenylethanol (tyrosol), an antioxidant present in olive oil, from 2-phenylethanol, a cheap and commercially available substrate. We initially found that wild-type ToMO is unable to convert 2-phenylethanol to tyrosol. This was explained by using a computational model which analyzed the interactions between ToMO active-site residues and the substrate. We found that residue F176 is the major steric hindrance for the correct positioning of the reaction intermediate leading to tyrosol production into the active site of the enzyme. Several mutants were designed and prepared, and we found that the combination of different mutations at position F176 with mutation E103G allows ToMO to convert up to 50% of 2-phenylethanol into tyrosol in 2 h.
机译:今天,生物催化是几种化学物质工业生产的标准技术,并且以商业规模运行的生物转化过程的数量正在不断增加。在生物催化剂中,细菌多组分单加氧酶(BMM)是激活双氧的多种非血红素二铁酶,由于它们催化多种复杂的氧化反应(包括酚类化合物的单羟基和二羟基化反应)的能力而受到人们的广泛关注。近年来,定向进化和合理设计均已成功用于鉴定引起BMM区域选择性的分子决定因素,并改善其对天然和非天然底物的活性。甲苯邻二甲苯单加氧酶(ToMO)是从假单胞菌sp。 OX1菌株,可将多种芳香族化合物羟基化。在这项工作中,我们研究了重组ToMO在4-羟基苯基乙醇(酪醇)(一种存在于橄榄油中的抗氧化剂)的大肠杆菌JM109重组细胞中的生物合成中的用途,该2-羟基乙醇是一种廉价且可商购的底物2-苯基乙醇。最初我们发现野生型ToMO无法将2-苯基乙醇转化为酪醇。这是通过使用计算模型来解释的,该计算模型分析了ToMO活性位点残基和底物之间的相互作用。我们发现,残基F176是导致反应中间物正确定位的主要位阻,导致酪氨酸生成进入酶的活性位点。设计并制备了几个突变体,我们发现F176位置的不同突变与突变E103G的组合使ToMO在2小时内将高达50%的2-苯基乙醇转化为酪醇。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号