首页> 外文期刊>Applied Microbiology >Regime Shift and Microbial Dynamics in a Sequencing Batch Reactor for Nitrification and Anammox Treatment of Urine
【24h】

Regime Shift and Microbial Dynamics in a Sequencing Batch Reactor for Nitrification and Anammox Treatment of Urine

机译:序列分批反应器中尿液的硝化和厌氧氨处理的状态变化和微生物动力学

获取原文
       

摘要

The microbial population and physicochemical process parameters of a sequencing batch reactor for nitrogen removal from urine were monitored over a 1.5-year period. Microbial community fingerprinting (automated ribosomal intergenic spacer analysis), 16S rRNA gene sequencing, and quantitative PCR on nitrogen cycle functional groups were used to characterize the microbial population. The reactor combined nitrification (ammonium oxidation)/anammox with organoheterotrophic denitrification. The nitrogen elimination rate initially increased by 400%, followed by an extended period of performance degradation. This phase was characterized by accumulation of nitrite and nitrous oxide, reduced anammox activity, and a different but stable microbial community. Outwashing of anammox bacteria or their inhibition by oxygen or nitrite was insufficient to explain reactor behavior. Multiple lines of evidence, e.g., regime-shift analysis of chemical and physical parameters and cluster and ordination analysis of the microbial community, indicated that the system had experienced a rapid transition to a new stable state that led to the observed inferior process rates. The events in the reactor can thus be interpreted to be an ecological regime shift. Constrained ordination indicated that the pH set point controlling cycle duration, temperature, airflow rate, and the release of nitric and nitrous oxides controlled the primarily heterotrophic microbial community. We show that by combining chemical and physical measurements, microbial community analysis and ecological theory allowed extraction of useful information about the causes and dynamics of the observed process instability.
机译:在1.5年的时间内监测了用于从尿液中脱氮的测序间歇反应器的微生物种群和理化过程参数。使用微生物群落指纹图谱(自动核糖体基因间隔分析),16S rRNA基因测序和氮循环功能基团的定量PCR来表征微生物种群。该反应器将硝化(铵氧化)/厌氧胺与有机异养反硝化结合在一起。氮消除率最初提高了400%,然后延长了性能退化的时间。此阶段的特征是亚硝酸盐和一氧化二氮的积累,降低的厌氧氨氧化活性以及不同但稳定的微生物群落。厌氧氨氧化细菌的冲洗或它们被氧气或亚硝酸盐的抑制作用不足以解释反应堆的行为。多条证据线,例如化学和物理参数的制度转变分析以及微生物群落的簇和排序分析,表明该系统已迅速过渡到新的稳定状态,从而导致观察到的劣等加工速率。因此,反应堆中的事件可以解释为生态状态的转变。约束排序表明,pH设定点控制循环时间,温度,气流速率以及一氧化氮和一氧化二氮的释放控制了主要的异养微生物群落。我们表明,通过将化学和物理测量相结合,微生物群落分析和生态学理论允许提取有关观察到的过程不稳定的原因和动态的有用信息。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号