...
首页> 外文期刊>Applied and Environmental Microbiology >Shifts in Identity and Activity of Methanotrophs in Arctic Lake Sediments in Response to Temperature Changes
【24h】

Shifts in Identity and Activity of Methanotrophs in Arctic Lake Sediments in Response to Temperature Changes

机译:北极湖泊沉积物中甲烷营养菌的身份和活性随温度变化而变化

获取原文

摘要

Methane (CH4) flux to the atmosphere is mitigated via microbial CH4 oxidation in sediments and water. As arctic temperatures increase, understanding the effects of temperature on the activity and identity of methanotrophs in arctic lake sediments is important to predicting future CH4 emissions. We used DNA-based stable-isotope probing (SIP), quantitative PCR (Q-PCR), and pyrosequencing analyses to identify and characterize methanotrophic communities active at a range of temperatures (4°C, 10°C, and 21°C) in sediments (to a depth of 25 cm) sampled from Lake Qalluuraq on the North Slope of Alaska. CH4 oxidation activity was measured in microcosm incubations containing sediments at all temperatures, with the highest CH4 oxidation potential of 37.5 μmol g?1 day?1 in the uppermost (depth, 0 to 1 cm) sediment at 21°C after 2 to 5 days of incubation. Q-PCR of pmoA and of the 16S rRNA genes of type I and type II methanotrophs, and pyrosequencing of 16S rRNA genes in 13C-labeled DNA obtained by SIP demonstrated that the type I methanotrophs Methylobacter, Methylomonas, and Methylosoma dominated carbon acquisition from CH4 in the sediments. The identity and relative abundance of active methanotrophs differed with the incubation temperature. Methylotrophs were also abundant in the microbial community that derived carbon from CH4, especially in the deeper sediments (depth, 15 to 20 cm) at low temperatures (4°C and 10°C), and showed a good linear relationship (R = 0.82) with the relative abundances of methanotrophs in pyrosequencing reads. This study describes for the first time how methanotrophic communities in arctic lake sediments respond to temperature variations.
机译:甲烷(CH4)向大气的通量通过沉积物和水中的微生物CH4氧化得到缓解。随着北极温度的升高,了解温度对北极湖沉积物中甲烷营养生物活性和特性的影响对于预测未来的CH4排放非常重要。我们使用了基于DNA的稳定同位素探测(SIP),定量PCR(Q-PCR)和焦磷酸测序分析来鉴定和表征在一定温度范围(4°C,10°C和21°C)下有活性的甲烷营养群落从阿拉斯加北坡的Qalluuraq湖取样的沉积物中(深度达25厘米)。在所有温度下,在包含沉积物的微观温育中测量CH4氧化活性,在2至5天后,最高的CH4氧化电位为37.5μmolg?1天?1,位于21°C时最深(0至1 cm深度)的沉积物中。孵化。通过SIP获得的pmoA和I型和II型甲烷营养生物的16S rRNA基因的Q-PCR以及通过SIP获得的13C标记的DNA中16S rRNA基因的焦磷酸测序表明,甲烷I型细菌,甲基杆菌和甲基恶臭菌主导了CH4的碳捕获在沉积物中。活性甲烷氧化菌的身份和相对丰度随培养温度的不同而不同。在低温(4°C和10°C)下,尤其是深层沉积物(15至20 cm的深度)中,甲烷生物在从CH4衍生碳的微生物群落中也很丰富,并表现出良好的线性关系(R = 0.82) )和焦磷酸测序读数中甲烷营养菌的相对丰度。这项研究首次描述了北极湖沉积物中的甲烷营养群落对温度变化的响应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号