...
首页> 外文期刊>Applied and Environmental Microbiology >Resistance of Saccharomyces cerevisiae to High Concentrations of Furfural Is Based on NADPH-Dependent Reduction by at Least Two Oxireductases
【24h】

Resistance of Saccharomyces cerevisiae to High Concentrations of Furfural Is Based on NADPH-Dependent Reduction by at Least Two Oxireductases

机译:酿酒酵母对高浓度糠醛的抗性是基于至少两种氧化还原酶对NADPH的依赖而产生的。

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Biofuels derived from lignocellulosic biomass hold promises for a sustainable fuel economy, but several problems hamper their economical feasibility. One important problem is the presence of toxic compounds in processed lignocellulosic hydrolysates, with furfural as a key toxin. While Saccharomyces cerevisiae has some intrinsic ability to reduce furfural to the less-toxic furfuryl alcohol, higher resistance is necessary for process conditions. By comparing an evolved, furfural-resistant strain and its parent in microaerobic, glucose-limited chemostats at increasing furfural challenge, we elucidate key mechanism and the molecular basis of both natural and high-level furfural resistance. At lower concentrations of furfural, NADH-dependent oxireductases are the main defense mechanism. At furfural concentrations above 15 mM, however, 13C-flux and global array-based transcript analysis demonstrated that the NADPH-generating flux through the pentose phosphate pathway increases and that NADPH-dependent oxireductases become the major resistance mechanism. The transcript analysis further revealed that iron transmembrane transport is upregulated in response to furfural. While these responses occur in both strains, high-level resistance in the evolved strain was based on strong induction of ADH7, the uncharacterized open reading frame (ORF) YKL071W, and four further, likely NADPH-dependent, oxireductases. By overexpressing the ADH7 gene and the ORF YKL071W, we inversely engineered significantly increased furfural resistance in the parent strain, thereby demonstrating that these two enzymes are key elements of the resistance phenotype.
机译:木质纤维素生物质衍生的生物燃料有望实现可持续的燃料经济,但一些问题阻碍了其经济可行性。一个重要的问题是加工后的木质纤维素水解产物中存在有毒化合物,糠醛为关键毒素。尽管酿酒酵母具有将糠醛还原为毒性较小的糠醇的某些内在能力,但工艺条件需要更高的抗性。通过比较不断增加的糠醛挑战,在微需氧,葡萄糖受限的恒化器中进化的糠醛抗性菌株及其亲本,我们阐明了天然和高水平糠醛抗性的关键机理和分子基础。在较低的糠醛浓度下,NADH依赖的氧化还原酶是主要的防御机制。但是,在糠醛浓度高于15 mM时,13 C-通量和基于全局阵列的转录本分析表明,通过戊糖磷酸途径的NADPH产生通量增加,而NADPH依赖性氧化还原酶成为主要的抗性机制。转录本分析进一步揭示,响应于糠醛,铁跨膜转运被上调。虽然这两种菌株都发生了这些应答,但进化菌株中的高水平抗性是基于ADH7的强诱导,未鉴定的开放阅读框(ORF)YKL071W以及另外四种可能与NADPH相关的氧化还原酶。通过过表达ADH7基因和ORF YKL071W,我们反向工程改造了亲本菌株中糠醛的抗性,从而证明这两种酶是抗性表型的关键要素。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号