...
首页> 外文期刊>Applied and Environmental Microbiology >Rhodobacter capsulatus Catalyzes Light-Dependent Fe(II) Oxidation under Anaerobic Conditions as a Potential Detoxification Mechanism
【24h】

Rhodobacter capsulatus Catalyzes Light-Dependent Fe(II) Oxidation under Anaerobic Conditions as a Potential Detoxification Mechanism

机译:荚膜红细菌在厌氧条件下催化光依赖性Fe(II)氧化作为潜在的解毒机理

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Diverse bacteria are known to oxidize millimolar concentrations of ferrous iron [Fe(II)] under anaerobic conditions, both phototrophically and chemotrophically. Yet whether they can do this under conditions that are relevant to natural systems is understood less well. In this study, we tested how light, Fe(II) speciation, pH, and salinity affected the rate of Fe(II) oxidation by Rhodobacter capsulatus SB1003. Although R. capsulatus cannot grow photoautotrophically on Fe(II), it oxidizes Fe(II) at rates comparable to those of bacteria that do grow photoautotrophically on Fe(II) as soon as it is exposed to light, provided it has a functional photosystem. Chelation of Fe(II) by diverse organic ligands promotes Fe(II) oxidation, and as the pH increases, so does the oxidation rate, except in the presence of nitrilotriacetate; nonchelated forms of Fe(II) are also more rapidly oxidized at higher pH. Salt concentrations typical of marine environments inhibit Fe(II) oxidation. When growing photoheterotrophically on humic substances, R. capsulatus is highly sensitive to low concentrations of Fe(II); it is inhibited in the presence of concentrations as low as 5 μM. The product of Fe(II) oxidation, ferric iron, does not hamper growth under these conditions. When other parameters, such as pH or the presence of chelators, are adjusted to promote Fe(II) oxidation, the growth inhibition effect of Fe(II) is alleviated. Together, these results suggest that Fe(II) is toxic to R. capsulatus growing under strictly anaerobic conditions and that Fe(II) oxidation alleviates this toxicity.
机译:众所周知,在厌氧条件下,无论是光养还是化学养分,各种各样的细菌都能氧化毫摩尔浓度的亚铁[Fe(II)]。然而,人们对他们是否能够在与自然系统相关的条件下做到这一点的了解较少。在这项研究中,我们测试了光,Fe(II)的形态,pH和盐度如何影响荚膜红细菌SB1003氧化Fe(II)的速率。尽管荚膜红球菌不能在Fe(II)上自养生长,但只要具有功能性的光系统,它就能以与在Fe(II)上能自养生长的细菌相当的速率氧化Fe(II)。 。 Fe(II)被各种有机配体螯合会促进Fe(II)的氧化,并且随着pH值的增加,氧化速率也会加快,除非存在次氮基三乙酸酯。非螯合形式的Fe(II)在较高的pH值下也可以更快地被氧化。海洋环境中典型的盐浓度会抑制Fe(II)的氧化。当在腐殖质物质上光异养地生长时,荚膜红球菌对低浓度的Fe(II)高度敏感。在低至5μM的浓度下抑制它。 Fe(II)氧化的产物三价铁不会在这些条件下阻碍生长。当调整其他参数(例如pH值或螯合剂的存在)以促进Fe(II)氧化时,Fe(II)的生长抑制作用得到缓解。总之,这些结果表明Fe(II)对在严格厌氧条件下生长的荚膜红球菌有毒,而Fe(II)的氧化可减轻这种毒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号