...
首页> 外文期刊>Applied and Environmental Microbiology >Effects of Iron and Nitrogen Limitation on Sulfur Isotope Fractionation during Microbial Sulfate Reduction
【24h】

Effects of Iron and Nitrogen Limitation on Sulfur Isotope Fractionation during Microbial Sulfate Reduction

机译:铁和氮限制对微生物硫酸盐还原过程中硫同位素分馏的影响

获取原文

摘要

Sulfate-reducing microbes utilize sulfate as an electron acceptor and produce sulfide that is depleted in heavy isotopes of sulfur relative to sulfate. Thus, the distribution of sulfur isotopes in sediments can trace microbial sulfate reduction (MSR), and it also has the potential to reflect the physiology of sulfate-reducing microbes. This study investigates the relationship between the availability of iron and reduced nitrogen and the magnitude of S-isotope fractionation during MSR by a marine sulfate-reducing bacterium, DMSS-1, a Desulfovibrio species, isolated from salt marsh in Cape Cod, MA. Submicromolar levels of iron increase sulfur isotope fractionation by about 50% relative to iron-replete cultures of DMSS-1. Iron-limited cultures also exhibit decreased cytochrome c-to-total protein ratios and cell-specific sulfate reduction rates (csSRR), implying changes in the electron transport chain that couples carbon and sulfur metabolisms. When DMSS-1 fixes nitrogen in ammonium-deficient medium, it also produces larger fractionation, but it occurs at faster csSRRs than in the ammonium-replete control cultures. The energy and reducing power required for nitrogen fixation may be responsible for the reverse trend between S-isotope fractionation and csSRR in this case. Iron deficiency and nitrogen fixation by sulfate-reducing microbes may lead to the large observed S-isotope effects in some euxinic basins and various anoxic sediments.
机译:还原硫酸盐的微生物利用硫酸盐作为电子受体并产生相对于硫酸盐而言贫化了重硫同位素的硫化物。因此,沉积物中硫同位素的分布可以追溯微生物硫酸盐的还原(MSR),并且也有可能反映出硫酸盐还原微生物的生理学。这项研究调查了从海洋硫酸盐还原细菌DMSS-1(一种脱硫弧菌属物种)分离得到的MSR过程中铁和还原氮的含量与S同位素分馏幅度之间的关系,该细菌来自马萨诸塞州科德角的盐沼。相对于DMSS-1的铁含量高的培养物,亚微摩尔水平的铁可使硫同位素分馏增加约50%。铁受限的培养物还表现出降低的细胞色素c /总蛋白质比例和特定于细胞的硫酸盐还原速率(csSRR),这意味着耦合碳和硫代谢的电子传输链发生了变化。当DMSS-1在缺铵的培养基中固定氮时,它也会产生较大的分馏,但它发生在csSRR更快的位置,而不是在富含铵的对照培养物中。在这种情况下,固氮所需的能量和还原能力可能是造成S同位素分馏与csSRR之间反向趋势的原因。在某些富氧盆地和各种缺氧沉积物中,铁的缺乏和硫酸盐还原性微生物的固氮作用可能导致大量的S同位素效应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号