首页> 外文期刊>Applied and Environmental Microbiology >Capacity for methane oxidation in landfill cover soils measured in laboratory-scale soil microcosms.
【24h】

Capacity for methane oxidation in landfill cover soils measured in laboratory-scale soil microcosms.

机译:在实验室规模的土壤微观世界中测得的垃圾掩埋场中甲烷氧化能力。

获取原文
           

摘要

Laboratory-scale soil microcosms containing different soils were permeated with CH(inf4) for up to 6 months to investigate their capacity to develop a methanotrophic community. Methane emissions were monitored continuously until steady states were established. The porous, coarse sand soil developed the greatest methanotrophic capacity (10.4 mol of CH(inf4) (middot) m(sup-2) (middot) day(sup-1)), the greatest yet reported in the literature. Vertical profiles of O(inf2), CH(inf4), and methanotrophic potential in the soils were determined at steady state. Methane oxidation potentials were greatest where the vertical profiles of O(inf2) and CH(inf4) overlapped. A significant increase in the organic matter content of the soil, presumably derived from methanotroph biomass, occurred where CH(inf4) oxidation was greatest. Methane oxidation kinetics showed that a soil community with a low methanotrophic capacity (V(infmax) of 258 nmol (middot) g of soil(sup-1) (middot) h(sup-1)) but relatively high affinity (k(infapp) of 1.6 (mu)M) remained in N(inf2)-purged control microcosms, even after 6 months without CH(inf4). We attribute this to a facultative, possibly mixotrophic, methanotrophic microbial community. When purged with CH(inf4), a different methanotrophic community developed which had a lower affinity (k(infapp) of 31.7 (mu)M) for CH(inf4) but a greater capacity (V(infmax) of 998 nmol (middot) g of soil(sup-1) (middot) h(sup-1)) for CH(inf4) oxidation, reflecting the enrichment of an active high-capacity methanotrophic community. Compared with the unamended control soil, amendment of the coarse sand with sewage sludge enhanced CH(inf4) oxidation capacity by 26%; K(inf2)HPO(inf4) amendment had no significant effect, while amendment with NH(inf4)NO(inf3) reduced the CH(inf4) oxidation capacity by 64%. In vitro experiments suggested that NH(inf4)NO(inf3) additions (10 and 71 (mu)mol (middot) g of soil(sup-1)) inhibited CH(inf4) oxidation by a nonspecific ionic effect rather than by specific inhibition by NH(inf4)(sup+).
机译:用CH(inf4)渗透包含不同土壤的实验室规模土壤缩影长达6个月,以研究其发展甲烷营养群落的能力。持续监测甲烷排放,直到建立稳定状态。多孔的粗砂土具有最大的甲烷营养能力(10.4 mol CH(inf4)(middot)m(sup-2)(middot)day(sup-1)),这是文献中所报道的最大值。确定了土壤中O(inf2),CH(inf4)和甲烷营养势的垂直分布。 O(inf2)和CH(inf4)的垂直剖面重叠时,甲烷氧化电位最大。 CH(inf4)氧化作用最大的地方发生了土壤有机物含量的显着增加,这可能是由甲烷营养生物产生的。甲烷氧化动力学表明,甲烷营养能力低(V(infmax)为258 nmol(middot)g土壤(sup-1)(middot)h(sup-1))的土壤群落但亲和力相对较高(k(infapp即使在没有CH(inf4)的6个月后,仍保留了N(inf2)吹扫的对照缩微胶中的1.6μM)。我们将其归因于兼性的,可能是混合营养的,甲烷营养的微生物群落。当用CH(inf4)吹扫时,形成了另一种甲烷营养群落,其对CH(inf4)的亲和力较低(k(infapp)为31.7μM),但容量较大(V(infmax)为998 nmol(middot)) g的土壤(sup-1)(middot)h(sup-1))用于CH(inf4)氧化,反映了活跃的高容量甲烷营养群落的富集。与未经改良的对照土壤相比,用污水污泥对粗砂进行改良可使CH(inf4)的氧化能力提高了26%; K(inf2)HPO(inf4)的修饰没有显着影响,而NH(inf4)NO(inf3)的修饰使CH(inf4)的氧化能力降低了64%。体外实验表明,添加NH(inf4)NO(inf3)(10和71μmol(middot)g土壤(sup-1))通过非特异性离子作用而非特异性抑制作用抑制CH(inf4)氧化由NH(inf4)(sup +)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号