...
首页> 外文期刊>Bulletin of the Korean Chemical Society >Spin-orbit Effects on the Structure of Haloiodomethane Cations CH2XI+ (X=F, Cl, Br, and I)
【24h】

Spin-orbit Effects on the Structure of Haloiodomethane Cations CH2XI+ (X=F, Cl, Br, and I)

机译:自旋轨道对卤代甲烷甲烷阳离子CH 2 XI + (X = F,Cl,Br和I)结构的影响

获取原文
           

摘要

The importance of including spin-orbit interactions for the correct description of structures and vibrational frequencies of haloiodomethanes is demonstrated by density functional theory calculations with spin-orbit relativistic effective core potentials (SO-DFT). The vibrational frequencies and the molecular geometries obtained by SO-DFT calculations do not match with the experimental results as well as for other cations without significant relativistic effects. In this sense, the present data can be considered as a guideline in the development of the relativistic quantum chemical methods. The influence of spin-orbit effects on the bending frequency of the cation could well be recognized by comparing the experimental and calculated results for CH2BrI and CH2ClI cations. Spin-orbit effects on the geometries and vibrational frequencies of CH2XI (X=F, Cl, Br, and I) neutral are negligible except that C-I bond lengths of haloiodomethane neutral is slightly increased by the inclusion of spin-orbit effects. The 2A` and 2A`` states were found in the cations of haloiodomethanes and mix due to the spin-orbit interactions and generate two 2E1/2 fine-structure states. The geometries of CH2XI+ (X=F and Cl) from SO-DFT calculations are roughly in the middle of two cation geometries from DFT calculations since two cation states of CH2XI (X=F and Cl) from DFT calculations are energetically close enough to mix two cation states. The geometries of CH2XI+ (X=Br and I) from SO-DFT calculations are close to that of the most stable cation from DFT calculations since two cation states of CH2XI (X=Br and I) from DFT calculations are energetically well separated near the fine-structure state minimum.
机译:通过自旋轨道相对论有效核心电位(SO-DFT)的密度泛函理论计算,证明了自旋轨道相互作用对于卤代甲烷的结构和振动频率的正确描述的重要性。通过SO-DFT计算获得的振动频率和分子几何形状与实验结果以及其他阳离子没有明显的相对论影响,均与实验结果不符。从这个意义上讲,当前数据可以被认为是相对论量子化学方法发展的指南。通过比较CH2BrI和CH2ClI阳离子的实验结果和计算结果,可以很好地认识到自旋轨道效应对阳离子弯曲频率的影响。自旋轨道对CH2XI(X = F,Cl,Br和I)中性分子的几何形状和振动频率的影响可以忽略不计,除了卤代甲烷中性分子的C-1键长会因自旋轨道效应而有所增加。由于自旋轨道相互作用,在卤代甲烷的阳离子中发现了2A`和2A''态并混合,并产生了两个2E1 / 2精细结构态。由于DFT计算得出的CH2XI的两个阳离子状态(X = F和Cl)在能量上足够接近以进行混合,因此SO-DFT计算得出的CH2XI +(X = F和Cl)的几何形状大致位于DFT计算得出的两种阳离子几何形状的中间。两个阳离子状态。 SO-DFT计算得出的CH2XI +(X = Br和I)的几何形状接近DFT计算得出的最稳定阳离子的几何形状,因为DFT计算得出的CH2XI(X = Br和I)的两个阳离子状态在能量附近很好地分开了精细结构状态最小值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号