...
首页> 外文期刊>BMC Genomics >Gravitational and magnetic field variations synergize to cause subtle variations in the global transcriptional state of Arabidopsis in vitro callus cultures
【24h】

Gravitational and magnetic field variations synergize to cause subtle variations in the global transcriptional state of Arabidopsis in vitro callus cultures

机译:引力和磁场变化共同导致拟南芥体外愈伤组织培养的整体转录状态发生细微变化

获取原文
           

摘要

Background Biological systems respond to changes in both the Earth's magnetic and gravitational fields, but as experiments in space are expensive and infrequent, Earth-based simulation techniques are required. A high gradient magnetic field can be used to levitate biological material, thereby simulating microgravity and can also create environments with a reduced or an enhanced level of gravity (g), although special attention should be paid to the possible effects of the magnetic field (B) itself. Results Using diamagnetic levitation, we exposed Arabidopsis thaliana in vitro callus cultures to five environments with different levels of effective gravity and magnetic field strengths. The environments included levitation, i.e. simulated μg* (close to 0 g* at B = 10.1 T), intermediate g* (0.1 g* at B = 14.7 T) and enhanced gravity levels (1.9 g* at B = 14.7 T and 2 g* at B = 10.1 T) plus an internal 1 g* control (B = 16.5 T). The asterisk denotes the presence of the background magnetic field, as opposed to the effective gravity environments in the absence of an applied magnetic field, created using a Random Position Machine (simulated μg) and a Large Diameter Centrifuge (2 g). Microarray analysis indicates that changes in the overall gene expression of cultured cells exposed to these unusual environments barely reach significance using an FDR algorithm. However, it was found that gravitational and magnetic fields produce synergistic variations in the steady state of the transcriptional profile of plants. Transcriptomic results confirm that high gradient magnetic fields (i.e. to create μg* and 2 g* conditions) have a significant effect, mainly on structural, abiotic stress genes and secondary metabolism genes, but these subtle gravitational effects are only observable using clustering methodologies. Conclusions A detailed microarray dataset analysis, based on clustering of similarly expressed genes (GEDI software), can detect underlying global-scale responses, which cannot be detected by means of individual gene expression techniques using raw or corrected p values (FDR). A subtle, but consistent, genome-scale response to hypogravity environments was found, which was opposite to the response in a hypergravity environment.
机译:背景技术生物系统响应地球磁场和重力场的变化,但是由于在太空中进行的实验昂贵且不频繁,因此需要基于地球的模拟技术。高梯度磁场可用于悬浮生物材料,从而模拟微重力,并且还可以创建具有降低或增强的重力水平(g)的环境,尽管应特别注意磁场的可能作用(B )本身。结果使用抗磁悬浮法,我们将拟南芥的体外愈伤组织培养物暴露于五个具有不同有效重力和磁场强度水平的环境。这些环境包括悬浮,即模拟的gg *(在B = 10.1 T时接近0 g *),中间g *(在B = 14.7 T时为0.1 g *)和增强的重力水平(在B = 14.7 T时为1.9 g *和2 B处的g * = 10.1 T)加上内部的1 g *对照(B = 16.5 T)。星号表示背景磁场的存在,这与使用随机位置机器(模拟μg)和大直径离心机(2 g)创建的背景磁场(不存在施加磁场的有效重力环境)相反。微阵列分析表明,使用FDR算法,暴露于这些异常环境的培养细胞的总体基因表达几乎没有变化。然而,发现重力和磁场在植物转录概况的稳态中产生协同变化。转录组学结果证实,高梯度磁场(即产生μg*和2 g *条件)具有显着影响,主要对结构,非生物胁迫基因和次级代谢基因产生影响,但这些微妙的引力作用只能通过聚类方法观察到。结论基于相似表达基因的聚类的详细微阵列数据集分析(GEDI软件)可以检测潜在的全球规模反应,而使用原始或校正的p值(FDR)的单个基因表达技术无法检测到潜在的全球反应。发现了一个对微重力环境的微妙但一致的基因组规模响应,这与超重力环境中的响应相反。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号