首页> 外文期刊>BMC Genomics >Inferring genetic architecture of complex traits using Bayesian integrative analysis of genome and transcriptome data
【24h】

Inferring genetic architecture of complex traits using Bayesian integrative analysis of genome and transcriptome data

机译:利用基因组和转录组数据的贝叶斯综合分析推断复杂性状的遗传结构

获取原文
获取外文期刊封面目录资料

摘要

Background To understand the genetic architecture of complex traits and bridge the genotype-phenotype gap, it is useful to study intermediate -omics data, e.g. the transcriptome. The present study introduces a method for simultaneous quantification of the contributions from single nucleotide polymorphisms (SNPs) and transcript abundances in explaining phenotypic variance, using Bayesian whole-omics models. Bayesian mixed models and variable selection models were used and, based on parameter samples from the model posterior distributions, explained variances were further partitioned at the level of chromosomes and genome segments. Results We analyzed three growth-related traits: Body Weight (BW), Feed Intake (FI), and Feed Efficiency (FE), in an F2 population of 440 mice. The genomic variation was covered by 1806 tag SNPs, and transcript abundances were available from 23,698 probes measured in the liver. Explained variances were computed for models using pedigree, SNPs, transcripts, and combinations of these. Comparison of these models showed that for BW, a large part of the variation explained by SNPs could be covered by the liver transcript abundances; this was less true for FI and FE. For BW, the main quantitative trait loci (QTLs) are found on chromosomes 1, 2, 9, 10, and 11, and the QTLs on 1, 9, and 10 appear to be expression Quantitative Trait Locus (eQTLs) affecting gene expression in the liver. Chromosome 9 is the case of an apparent eQTL, showing that genomic variance disappears, and that a tri-modal distribution of genomic values collapses, when gene expressions are added to the model. Conclusions With increased availability of various -omics data, integrative approaches are promising tools for understanding the genetic architecture of complex traits. Partitioning of explained variances at the chromosome and genome-segment level clearly separated regulatory and structural genomic variation as the areas where SNP effects disappeared/remained after adding transcripts to the model. The models that include transcripts explained more phenotypic variance and were better at predicting phenotypes than a model using SNPs alone. The predictions from these Bayesian models are generally unbiased, validating the estimates of explained variances.
机译:背景为了解复杂性状的遗传结构并弥合基因型-表型差距,研究中间组学数据(例如转录组。本研究介绍了一种方法,用于使用贝叶斯全组学模型同时量化单核苷酸多态性(SNP)和转录本丰度在解释表型方差中的作用。使用贝叶斯混合模型和变量选择模型,并且基于来自模型后验分布的参数样本,在染色体和基因组片段的水平上进一步解释了方差。结果我们分析了440只F 2 种群中三个与生长相关的特征:体重(BW),饲料摄入(FI)和饲料效率(FE)。基因组变异被1806个标记SNP覆盖,并且从肝脏中测得的23,698个探针可获得转录本丰度。使用系谱,SNP,成绩单及其组合对模型计算出解释方差。这些模型的比较表明,对于BW,肝脏转录本的丰度可以覆盖SNP解释的很大一部分变异。对于FI和FE,情况则并非如此。对于BW,主要的定量性状基因座(QTL)位于染色体1、2、9、10和11上,而1、9和10上的QTL似乎是表达数量性状基因座(eQTL)的表达,影响基因的表达。肝脏。染色体9是明显的eQTL的情况,表明当将基因表达添加到模型时,基因组变异消失,并且基因组值的三峰分布崩溃。结论随着各种组学数据可用性的提高,整合方法是了解复杂性状遗传结构的有前途的工具。在将转录本添加至模型后,SNP效应消失/保留的区域在染色体和基因组片段水平上解释的变异的划分清楚地将调节和结构基因组变异分开。与仅使用SNP的模型相比,包含转录本的模型解释的表型差异更大,并且在预测表型方面更好。这些贝叶斯模型的预测通常是无偏的,从而验证了解释方差的估计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号