首页> 外文期刊>Journal of Zhejiang university science >Modeling correlated samples via sparse matrix Gaussian graphical models
【24h】

Modeling correlated samples via sparse matrix Gaussian graphical models

机译:通过稀疏矩阵高斯图形模型对相关样本进行建模

获取原文
           

摘要

A new procedure of learning in gaussian graphical models is proposed under the assumption that samples are possibly dependent. This assumption, which is pragmatically applied in various areas of multivariate analysis ranging from bioinformatics to finance, makes standard gaussian graphical models (GGMs) unsuitable. We demonstrate that the advantage of modeling dependence among samples is that the true discovery rate and positive predictive value are improved substantially than if standard GGMs are applied and the dependence among samples is ignored. The new method, called matrix-variate gaussian graphical models (MGGMs), involves simultaneously modeling variable and sample dependencies with the matrix-normal distribution. The computation is carried out using a Markov chain Monte Carlo (MCMC) sampling scheme for graphical model determination and parameter estimation. Simulation studies and two real-world examples in biology and finance further illustrate the benefits of the new models.
机译:在样本可能相关的假设下,提出了一种在高斯图形模型中学习的新方法。从生物信息学到金融的多变量分析的各个领域中,务实地应用了该假设,因此不适合使用标准的高斯图形模型(GGM)。我们证明了对样本之间的依赖性进行建模的优势在于,与应用标准GGM和忽略样本之间的依赖性相比,真实发现率和阳性预测值得到了显着提高。这种称为矩阵变量高斯图形模型(MGGM)的新方法涉及使用矩阵正态分布同时对变量和样本相关性进行建模。使用马尔可夫链蒙特卡洛(MCMC)采样方案进行计算,以进行图形模型确定和参数估计。仿真研究以及两个生物学和金融领域的实际例子进一步说明了新模型的好处。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号