首页> 外文期刊>Journal of Therapeutic Ultrasound >MR thermometry for focused ultrasound monitoring utilizing model predictive filtering and ultrasound beam modeling
【24h】

MR thermometry for focused ultrasound monitoring utilizing model predictive filtering and ultrasound beam modeling

机译:使用模型预测过滤和超声束建模的MR测温法用于聚焦超声监测

获取原文
           

摘要

Background A major challenge in using magnetic resonance temperature imaging (MRTI) to monitor focused ultrasound (FUS) applications is achieving high spatio-temporal resolution over a large field of view (FOV). This is important to accurately monitor all ultrasound (US) power depositions. Magnetic resonance (MR) subsampling in conjunction with thermal model-based reconstruction of the MRTI utilizing Pennes bioheat transfer equation (PBTE) is one promising approach. The thermal properties used in the thermal model are often estimated from a pre-treatment, low-power sonication. Methods In this proof-of-concept study we investigate the use of US simulations computed using the hybrid angular spectrum (HAS) method to estimate the US power deposition density Q , thereby avoiding the pre-treatment sonication and any potential tissue damage. MRTI reconstructions are performed using a thermal model-based reconstruction method called model predictive filtering (MPF). Experiments are performed in a homogeneous gelatin phantom and in a gelatin phantom with embedded plastic skull. MPF reconstructions are compared to separate sonications imaged with fully sampled data over a smaller FOV. Temperature root-mean-square errors (RMSE) and focal spot positions and shapes are evaluated. Results HAS simulations accurately predict the location of the focal spot (to within 1?mm) in both phantoms. Accurate temperature maps (RMSE below 1?°C), where the location of the focal spot agrees well with fully sampled “truth” (to within 1?mm), are also achieved in both phantoms. Conclusions HAS simulations can be used to accurately predict the focal spot location in homogeneous media and when focusing through an aberrating plastic skull. The HAS simulated power deposition ( Q ) patterns can be used in the MPF thermal model-based reconstruction to obtain accurate temperature maps with high spatio-temporal resolution over large FOVs.
机译:背景技术使用磁共振温度成像(MRTI)来监视聚焦超声(FUS)应用的主要挑战是在较大的视场(FOV)上实现高时空分辨率。这对于准确监视所有超声(US)功率沉积很重要。利用Pennes生物传热方程(PBTE)的磁共振(MR)二次采样与基于热模型的MRTI重建相结合是一种很有前途的方法。热模型中使用的热特性通常是通过预处理,低功率声处理来估算的。方法在本概念验证研究中,我们研究了使用混合角谱(HAS)方法计算的US模拟来估算US功率沉积密度Q,从而避免了预处理的超声处理和任何潜在的组织损伤。使用称为模型预测过滤(MPF)的基于热模型的重建方法执行MRTI重建。实验在均质明胶模型和带有嵌入式塑料头骨的明胶模型中进行。将MPF重建与在较小的FOV上用完全采样的数据成像的单独超声处理进行比较。评估温度均方根误差(RMSE)以及焦点位置和形状。结果HAS仿真可以准确预测两个体模中焦点的位置(在1?mm以内)。在两个体模中,还可以获得准确的温度图(RMSE低于1?C),在该温度图上,焦点的位置与完全采样的“真相”(在1?mm以内)非​​常吻合。结论HAS模拟可用于准确预测均匀介质中以及通过畸变的塑料头骨聚焦时的焦点位置。 HAS模拟的功率沉积(Q)模式可用于基于MPF热模型的重建,以在大FOV上获得具有高时空分辨率的准确温度图。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号