...
首页> 外文期刊>Journal of radiation research >Development of fast patient position verification software using 2D-3D image registration and its clinical experience
【24h】

Development of fast patient position verification software using 2D-3D image registration and its clinical experience

机译:利用2D-3D图像配准开发快速患者位置验证软件及其临床经验

获取原文

摘要

Treatment workflow for carbon-ion beam treatment is similar to that for proton beam and external beam photon therapy. The design of our new treatment facility was focused on providing a treatment workflow that could be adapted for use in any treatment situation. The main workflow consists of immobilization, CT acquisition, treatment planning, simulation, quality assurance, and treatment beam irradiation. The ITG includes two functions, 2D/2D manual registration (2D/2D-ITG) and 2D/3D auto-registration (2D/3D-ITG). These two functions work interactively. Here, we focus on 2D/3D-ITG. DRR calculation is the summation of CT voxel values along the X-ray projection ray. Although several DRR calculation algorithms have been reported [id="xref-ref-8-1" class="xref-bibr" href="#ref-8">8, id="xref-ref-9-1" class="xref-bibr" href="#ref-9">9], our implementation [id="xref-ref-10-1" class="xref-bibr" href="#ref-10">10] was designed to improve calculation speed based on the extension of a Siddon ray tracing algorithm [id="xref-ref-9-2" class="xref-bibr" href="#ref-9">9] to volume data using trilinear interpolation to reduce interpolation errors [id="xref-ref-7-2" class="xref-bibr" href="#ref-7">7]. To provide similar image quality to FPD, we convert these CT voxel data to the X-ray attenuation for photon energy using image processing of the CT-number weighting in each CT voxel data before integration of the pixel value along the ray. Another fast calculation technique segments the CT data within the patient surface and integrates CT voxel values within this region only. Moreover, we set calculation ROIs on orthogonal FPD images, which are user-selected registration regions, on the basis that patient anatomical position may not be exactly the same in respective treatment fractions [id="xref-ref-10-2" class="xref-bibr" href="#ref-10">10]. If the user forgets to set the calculation ROI, the ITG automatically sets it by expanding the target ROI regions. DRR calculation is done within the above regions only. These calculation regions are recorded in an RT image, and automatically displayed during the treatment course. These two techniques each provide a significant reduction in computation cost. Parameters described here are DRR projection parameters (six degrees of freedom (6DOF)), which iteratively estimate the unknown pose of the X-ray system relative to the CT volume. These parameters are defined using normalized mutual information (NMI) [id="xref-ref-11-1" class="xref-bibr" href="#ref-11">11], gradient differences (GDs) [id="xref-ref-5-2" class="xref-bibr" href="#ref-5">5], and zero-mean normalized cross-correlation (ZNCC) as similarity measures (see Appendix). We used a single or combination of these metrics to calculate the final score by applying weighting values to the respective scores for each anatomical site. 2D/3D-ITG calculates the four respective parameters from each image direction, namely the registration errors for X, Y, φ and θ and those for Y, Z and ψ, as derived from the vertical and horizontal images, respectively. This is because positional errors in translation and rotation on the plane are more easily recognized than those out of the plane (Fig. id="xref-fig-1-4" class="xref-fig" href="#F1">1). For example, positional errors in Y, Z and ψ are easy to recognize in horizontal images. Therefore, weaker directions (e.g. X and θ in horizontal images) in respective images are supported by each other. Since vertical and horizontal images share a Y-axis, registration errors in Y and φ derived from respective images are averaged. This averaging allows the calculation of 6DOF registration errors. However, when two FPDs are installed in any configuration apart from 90°, 2D/3D-ITG calculates the six parameters from each image direction. Orthogonal FPD images are acquired in two sets using an X-ray imaging system (Canon CXDI-55C, Tokyo, Japan) with an imaging area size of 35 cm × 43 cm and a pixel pitch of 0.16 mm. A CsI scintillator receptor is used for static image acquisition. All FPDs are installed within the port cover. The vertical X-ray tube is set under the floor (Fig. id="xref-fig-2-2" class="xref-fig" href="#F2">2), and the horizontal X-ray tube is set at the opposite side of the horizontal FPD and moved down when it is used. The distance from the room isocenter (ISO) and source–image receptor distance (SID) are 155 cm and 213 cm, respectively. We evaluated the 2D/3D-ITG function in terms of computation time and registration accuracy. Registration errors were defined using the similarity metrics GD, NMI, ZNCC and their combination. These metrics have various characteristics, as described in the Appendix and can be strongly affected on the image quality (bone emphasizes sites such as pelvic and head regions and s
机译:碳离子束治疗的处理工作流程与质子束和外部束光子治疗的工作流程相似。我们新的治疗设施的设计专注于提供可适用于任何治疗情况的治疗工作流程。主要工作流程包括固定,CT采集,治疗计划,模拟,质量保证和治疗束照射。 ITG包括两个功能:2D / 2D手动注册(2D / 2D-ITG)和2D / 3D自动注册(2D / 3D-ITG)。这两个功能可以交互工作。在这里,我们关注2D / 3D-ITG。 DRR计算是沿X射线投影射线的CT体素值的总和。尽管已经报告了几种DRR计算算法[id="xref-ref-8-1" class="xref-bibr" href="#ref-8"> 8 ,但id =“ xref -ref-9-1“ class =” xref-bibr“ href =”#ref-9“> 9 ],我们的实现[id =” xref-ref-10-1“ class =” xref -bibr“ href =”#ref-10“> 10 ]旨在根据Siddon射线跟踪算法[id =” xref-ref-9-2“ class =使用三线性插值将体积数据“ xref-bibr” href =“#ref-9”> 9 ]减少到插值错误[id =“ xref-ref-7-2” class =“ xref-bibr “ href =”#ref-7“> 7 ]。为了提供与FPD相似的图像质量,我们在对像素值沿射线进行积分之前,通过对每个CT体素数据中的CT数权重进行图像处理,将这些CT体素数据转换为光子能量的X射线衰减。另一种快速计算技术将患者表面内的CT数据分段,并仅在该区域内积分CT体素值。此外,我们基于正交FPD图像(用户选择的注册区域)设置计算ROI,其依据是患者的解剖位置在各个治疗分数中可能并不完全相同[id =“ xref-ref-10-2” class =“ xref-bibr” href =“#ref-10”> 10 ]。如果用户忘记设置计算ROI,ITG会通过扩展目标ROI区域自动进行设置。 DRR计算仅在以上区域内完成。这些计算区域记录在RT图像中,并在治疗过程中自动显示。这两种技术均大大降低了计算成本。此处描述的参数是DRR投影参数(六个自由度(6DOF)),可迭代地估计X射线系统相对于CT体积的未知姿态。这些参数是使用标准化互信息(NMI)[id="xref-ref-11-1" class="xref-bibr" href="#ref-11"> 11 ]定义的,并采用了梯度差异(GDs)[id="xref-ref-5-2" class="xref-bibr" href="#ref-5"> 5 ]和零均值归一化互相关(ZNCC )作为相似性度量(请参见附录)。我们通过将权重值应用于每个解剖部位的相应分数,使用这些指标的单个或组合来计算最终分数。 2D / 3D-ITG从每个图像方向计算四个相应的参数,即 X Y φ的配准误差分别来自垂直图像和水平图像的θ Y Z ψ的那些。这是因为与在平面上平移和旋转时相比,在平面上平移和旋转时的位置误差更容易识别(图id =“ xref-fig-1-4” class =“ xref-fig” href =“#F1 “> 1 )。例如,在水平图像中容易识别 Y Z ψ中的位置误差。因此,各个图像中较弱的方向(例如,水平图像中的 X θ)相互支持。由于垂直图像和水平图像共享Y轴,因此对从各个图像导出的 Y φ中的配准误差进行平均。该平均允许计算6DOF注册错误。但是,当以90°以外的任何配置安装两个FPD时,2D / 3D-ITG将从每个图像方向计算六个参数。使用X射线成像系统(Canon CXDI-55C,东京,日本)以两组方式采集正交FPD图像,成像区域尺寸为35 cm×43 cm,像素间距为0.16 mm。 CsI闪烁体受体用于静态图像采集。所有FPD都安装在端口盖内。垂直X射线管位于地板下方(图id="xref-fig-2-2" class="xref-fig" href="#F2"> 2 ),并且水平X射线管位于水平FPD的另一侧,使用时向下移动。距房间等中心点(ISO)的距离和源图像接收器的距离(SID)分别为155 cm和213 cm。我们根据计算时间和配准精度评估了2D / 3D-ITG功能。使用相似性度量GD,NMI,ZNCC及其组合定义了注册错误。这些指标具有各种特征,如附录中所述,并且会严重影响图像质量(骨骼强调骨盆和头部区域以及

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号