首页> 外文期刊>Journal of radiation research >Computer-assisted delineation of lung tumor regions in treatment planning CT images with PET/CT image sets based on an optimum contour selection method
【24h】

Computer-assisted delineation of lung tumor regions in treatment planning CT images with PET/CT image sets based on an optimum contour selection method

机译:基于最佳轮廓选择方法的PET / CT图像集在治疗计划CT图像中计算机辅助描绘肺肿瘤区域

获取原文
       

摘要

Datasets consisting of planning CT and PET/CT images of six lung cancer patients (mean age: 74 years; range: 65–86 years; females: 3; males: 3; mean effective diameter of GTV: 23.8 mm; range: 17.7–29.4 mm) who had received SBRT were selected for this study. The patient characteristics are summarized in Table id="xref-table-wrap-1-1" class="xref-table" href="#T1">1. All tumors were solid type cancers. Planning CT images of the patients were acquired with breath-holding at the end of expiration to delineate the tumor region and to calculate the dose distribution for each patient with a radiation treatment-planning (RTP) system, whereas PET/CT image sets were obtained to help the treatment planners delineate the tumor region from a functional point of view. The CT scan has the advantage of providing high-resolution images with anatomical detail, but it is not good at giving functional information about tumors. In contrast, PET images reflect the functional processes in biological bodies. To utilize both functional and anatomical information in the same coordinate system, the PET images were registered with the planning CT images. Initial GTV regions were determined by thresholding the PET images by a certain percentage of the SUVmax, because brighter tumor regions in PET images indicate regions where tumor cells may be active. To register PET/CT images and planning CT images, Cai et al. performed a validation study of CT and PET lung image registration based on a chamfer-matching method, with registration errors of 2–3 mm in the transverse plane, 3–4 mm in the longitudinal direction, and about 1.5 degrees in rotation [id="xref-ref-12-1" class="xref-bibr" href="#ref-12">12]. Mattes et al. proposed a free-form deformation method, with overall errors ranging from 0 to 6 mm [id="xref-ref-13-1" class="xref-bibr" href="#ref-13">13]. Figure id="xref-fig-5-1" class="xref-fig" href="#F5">5 illustrates the discrepancies in location and shape of tumor regions between the CT and PET images after the two-step registration mentioned above. These discrepancies might be caused by respiratory motion, inhomogeneous radioactivity concentrations in the GTV regions, or the large time intervals between the PET/CT and planning CT scans. The final GTVs were segmented by applying the OCS method to the initial region as determined on the PET images. The basic concept of the OCS method is to retrospectively select a global optimum object contour from among multiple active delineations with an LSM around tumors. In the OCS method, the LSM [id="xref-ref-14-1" class="xref-bibr" href="#ref-14">14] is employed for searching for the optimum object contour in the relationship between the average speed function value on an evolving curve and the evolution time. The performance of the proposed method was evaluated using a Dice similarity coefficient (DSC) [id="xref-ref-15-1" class="xref-bibr" href="#ref-15">15]. The DSC denotes the degree of region similarity between the GTV gold standard region and the GTV region obtained by the proposed method. The DSC was calculated by the following equation: class="disp-formula" id="disp-formula-5"> class="mathjax mml-math">mml:math display="block"mml:miD/mml:mimml:miS/mml:mimml:miC/mml:mimml:mo=/mml:momml:mrow/mml:mrowmml:mstylemml:mrowmml:mfracmml:mrowmml:mn2/mml:mnmml:min/mml:mimml:mo stretchy="false"(/mml:momml:mrowmml:miT/mml:mimml:mrowmml:mo∩/mml:mo/mml:mrowmml:mo?/mml:momml:miD/mml:mi/mml:mrowmml:mo stretchy="false")/mml:mo/mml:mrowmml:mrowmml:min/mml:mimml:mo stretchy="false"(/mml:momml:miT/mml:mimml:mo stretchy="false")/mml:momml:mo+/mml:momml:min/mml:mimml:mo stretchy="false"(/mml:momml:miD/mml:mimml:mo stretchy="false")/mml:mo/mml:mrow/mml:mfrac/mml:mrowmml:mo,/mml:mo/mml:mstyle/mml:math class="mathjax-text">DSC=2n(T∩?D)n(T)+n(D), class="disp-formula-label">(5) where T is the GTV gold standard region determined by two radiation oncologists, D is the GTV region contoured by the proposed method, n(T) is the number of pixels in the region T, n(D) is the number of pixels in the region D, and n(TD) is the number of logical AND pixels between T and D. The DSC ranges from 0 (no overlap between T and D) to 1 (T and D
机译:数据集由六名肺癌患者的CT和PET / CT计划图像组成(平均年龄:74岁;范围:65-86岁;女性:3;男性:3; GTV的平均有效直径:23.8 mm;范围:17.7–选择接受SBRT治疗的29.4 mm)。表id="xref-table-wrap-1-1" class="xref-table" href="#T1"> 1 中总结了患者的特征。所有肿瘤均为实体型癌症。呼气结束时屏住呼吸获取患者的计划CT图像,以描绘肿瘤区域并使用放射治疗计划(RTP)系统计算每位患者的剂量分布,而获得PET / CT图像集从功能的角度帮助治疗计划者划定肿瘤区域。 CT扫描的优点是可以提供具有解剖学细节的高分辨率图像,但是它并不擅长提供有关肿瘤的功能信息。相反,PET图像反映了生物体内的功能过程。为了在同一坐标系中同时利用功能和解剖学信息,将PET图像与计划CT图像对齐。通过将PET图像阈值设定为SUV max 的一定百分比来确定初始GTV区域,因为PET图像中较亮的肿瘤区域表示肿瘤细胞可能处于活动状态。要注册PET / CT图像并计划CT图像,Cai et al 。进行了基于倒角匹配方法的CT和PET肺图像配准的验证研究,配准误差在横向平面上为2–3 mm,在纵向方向上为3–4 mm,旋转方向约为1.5度[id =“ xref-ref-12-1” class =“ xref-bibr” href =“#ref-12”> 12 ]。哑光 et al 。提出了一种自由形式的变形方法,其总体误差范围为0到6毫米[id="xref-ref-13-1" class="xref-bibr" href="#ref-13"> 13 ]。图id="xref-fig-5-1" class="xref-fig" href="#F5"> 5 说明了在CT和PET图像之间,肿瘤区域的位置和形状之间的差异上述两步注册。这些差异可能是由于呼吸运动,GTV区域中放射性浓度不均一或PET / CT与计划CT扫描之间的时间间隔过长所致。通过将OCS方法应用于PET图像上确定的初始区域来分割最终的GTV。 OCS方法的基本概念是从肿瘤周围具有LSM的多个活动轮廓中回顾性地选择全局最佳对象轮廓。在OCS方法中,使用LSM [id="xref-ref-14-1" class="xref-bibr" href="#ref-14"> 14 ]搜索最佳物体在运动曲线上的平均速度函数值与运动时间之间的关系。使用Dice相似系数(DSC)[id="xref-ref-15-1" class="xref-bibr" href="#ref-15"> 15 ]。 DSC表示通过所提出的方法获得的GTV金标准区域和GTV区域之间的区域相似度。 DSC由以下公式计算: class =“ disp-formula” id =“ disp-formula-5”> class =“ mathjax mml-math”> < mml:math display =“ block”> D S C = 2 n T D < mml:mo Stretchy =“ false”>) n T + n D )< / mml:mo> class =“ mathjax-text”> DSC = 2n(T∩D)n(T)+ n(D), class =“ disp-formula-label”> (5) 其中, T 是由两名放射肿瘤学家确定的GTV黄金标准区域, D 是通过提出的方法 n T )绘制轮廓的GTV区域是区域 T 中的像素数, n D )是区域 D 中的像素数>,而 n T D )是 T 之间的逻辑AND像素数D 。 DSC的范围从0( T D 之间没有重叠)到1( T D

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号