...
首页> 外文期刊>Journal of Physics: Conference Series >Quantification of the axial induction exerted by utility-scale wind turbines by coupling LiDAR measurements and RANS simulations
【24h】

Quantification of the axial induction exerted by utility-scale wind turbines by coupling LiDAR measurements and RANS simulations

机译:通过结合LiDAR测量和RANS模拟来量化公用事业规模风力涡轮机产生的轴向感应

获取原文

摘要

The axial induction exerted by utility-scale wind turbines for different operative and atmospheric conditions is estimated by coupling ground-based LiDAR measurements and RANS simulations. The LiDAR data are thoroughly post-processed in order to average the wake velocity fields by using as common reference frame their respective wake directions and the turbine hub location. The various LiDAR scans are clustered according to their incoming wind speed at hub height and atmospheric stability regime, namely Bulk Richardson number. Time-averaged velocity fields are then calculated as ensemble averages of the scans belonging to the same cluster. The LiDAR measurements are coupled with RANS simulations in order to estimate the rotor axial induction for each cluster of the LiDAR data. First, a control volume analysis of the streamwise momentum is applied to the time-averaged LiDAR velocity fields to obtain an initial estimate of the axial induction over the rotor disk. The calculated thrust force is imposed as forcing of an axisymmetric RANS simulation in order to estimate pressure, radial velocity and momentum fluxes. The latter are combined with the LiDAR streamwise velocity field in order to refine the estimate of the rotor axial induction through the control volume approach. This process is repeated iteratively until achieving convergence on the rotor axial induction while minimizing difference between LiDAR and RANS streamwise velocity fields. This procedure allows to single out the reduction in thrust load while the blade pitch angle is increased transitioning from region 2 to 3 of the power curve. Furthermore, an enhanced thrust force is observed for a fixed incoming wind speed and transitioning from stable to convective stability regimes. The presented technique is proposed as a data-driven alternative to the blade element momentum theory typically used with current actuator disk models in order to quantify rotor aerodynamic thrust for different operative and atmospheric conditions.
机译:通过结合基于地面的LiDAR测量和RANS仿真,可以估算公用事业规模的风力涡轮机在不同的运行和大气条件下产生的轴向感应。对LiDAR数据进行了彻底的后处理,以便通过将它们各自的尾流方向和涡轮机轮毂位置用作通用参考系来平均尾流速度场。各种LiDAR扫描根据它们在轮毂高度和大气稳定状态下的传入风速进行聚类,即Bulk Richardson数。然后将时间平均速度场计算为属于同一簇的扫描的整体平均。 LiDAR测量值与RANS模拟结合在一起,以便为LiDAR数据的每个群集估算转子轴向感应。首先,将流向动量的控制量分析应用于时间平均LiDAR速度场,以获得对转子盘上轴向感应的初始估计。为了估算压力,径向速度和动量通量,将计算出的推力作为轴对称RANS模拟的强制施加。后者与LiDAR流向速度场相结合,以通过控制体积方法改进转子轴向感应的估计。反复重复此过程,直到在转子轴向感应上实现收敛,同时最大程度地减小LiDAR和RANS流向速度场之间的差异。该程序允许从功率曲线的区域2过渡到3时,在增加叶片桨距角的同时,选择推力载荷的减小。此外,对于固定的进入风速并从稳定状态过渡到对流稳定状态,可以观察到增强的推力。提出的提出的技术是作为数据驱动的替代方法,它是通常与当前执行器盘模型一起使用的叶片元件动量理论的一种替代方法,目的是针对不同的工作和大气条件来量化转子的空气动力推力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号