首页> 外文期刊>Journal of mineralogical and petrological sciences >A matter of time: The importance of the duration of UHT metamorphism
【24h】

A matter of time: The importance of the duration of UHT metamorphism

机译:时间问题:UHT变质持续时间的重要性

获取原文
           

摘要

The duration of granulite (G) and ultra–high temperature (UHT) conditions in regional metamorphism is critical to arguments regarding the tectonic settings of granulites and their relationships to Supercontinent assembly. Analysis of zircon geochronology integrated with trace element (REE) constraints on the timing of zircon growth or modification and evidence for metamorphic temperatures from Ti–in–zircon reveals that zircon can form episodically at or near the metamorphic peak in long–lived UHT granulites. This reflects the segregation, transfer and stagnation or trapping of melts which leads to local melt–rock interactions that promotes zircon crystallisation. In contrast, although rutile can retain UHT information in short duration (‘fast’) G–UHT terrains it is afflicted by Zr loss in long duration (‘slow’) terrains and yields temperatures significantly lower than those preserved by zircons formed in the same G–UHT events. An assessment of the age–duration evidence from several well–documented G–UHT terrains reveals that most are ‘slow’, having durations of UHT, Δt_(900), in the range 30–100 Myr. Some UHT terrains previously considered to be short–lived (Δt_(900) < 10 Myr) have longer durations of UHT in the light of recent geochronology and hence are also classed as ‘slow’. Of the models proposed to account for UHT metamorphism, the ‘large hot orogen’ (LHO) model for collisional orogeny provides the best setting for the formation of such ‘slow’ UHT granulites. LHO models can account not only for the P–T paths, which can range from UHT with near–isothermal decompression (UHT–ITD) through to decompression–cooling and UHT followed by near–isobaric cooling (UHT–IBC), but also for residence times under UHT conditions. The Napier Complex, the Earth’s premier UHT terrain, probably formed as trapped deep crust in the hot underbelly of a late–Archaean LHO. Shorter duration UHT and near–UHT granulites also exist, mostly with Δt_(900) less than 10 Myr. A number of these are likely to have formed as a consequence of severe lithospheric thinning and crustal extension accompanied by voluminous magmatism, which could occur in arc and back–arc settings affected by subduction roll–back or, as advocated by previous workers, continental arcs undergoing extension. However, attaining long–lived UHT conditions in these settings is unlikely unless the crust has inherently high radioactive heat production in addition to the transient heat added during extension and magmatism.
机译:粒变(G)和超高温(UHT)条件在区域变质中的持续时间对于关于粒变的构造环境及其与超大陆组装的关系的争论至关重要。分析锆石的地质年代学并结合微量元素(REE)对锆石生长或变质时间的限制,以及钛锆石中变质温度的证据表明,锆石可以在长寿命UHT粒岩的变质峰处或附近形成。这反映了熔体的偏析,转移,停滞或截留,这导致了局部熔体与岩石的相互作用,从而促进了锆石的结晶。相比之下,尽管金红石可以在短时间(“快”)G–UHT地形中保留UHT信息,但在长时间(“慢”)地形中Zr损失会使其遭受折磨,并且其温度显着低于在同一时间形成的锆石所保存的温度G–UHT事件。对来自多个有据可查的G-UHT地形的年龄持续时间证据的评估表明,大多数地形都是“缓慢的”,UHT的持续时间Δt_(900)在30-100 Myr范围内。根据最近的年代学,一些以前被认为是短命的UHT地形(Δt_(900)<10 Myr)具有更长的UHT持续时间,因此也被称为“慢速”。在提议用于解释UHT变质作用的模型中,碰撞造山作用的“大型热造山带”(LHO)模型为此类“慢速” UHT粒岩的形成提供了最佳环境。 LHO模型不仅可以解释 P–T路径,其范围可以从具有等温减压(UHT–ITD)的UHT一直到减压冷却和UHT再有接近等压冷却(UHT–IBC)的范围,而且还适用于UHT条件下的停留时间。纳皮尔综合体(Napier Complex)是地球上最主要的超高温(UHT)地形,可能是晚期Archaean LHO炎热的下腹部深陷的地壳形成的。还存在持续时间较短的UHT和近UHT粒岩,其中大多数Δt_(900)小于10 Myr。其中许多可能是由于岩石圈严重变薄和地壳伸展并伴有大量岩浆作用而形成的,这种现象可能发生在俯冲后退影响的弧和后弧环境中,或者如先前的工作人员所主张的那样,是大陆弧正在扩展。但是,在这些环境中不可能达到长寿命的超高温条件,除非地壳除了在伸展和岩浆作用期间增加了瞬态热量外,还具有固有的高放射热量产生能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号