...
首页> 外文期刊>Journal of Material Sciences & Engineering >Tuning Fiber Alignment to Achieve Mechanical Anisotropy on Polymeric Electrospun Scaffolds for Cardiovascular Tissue Engineering
【24h】

Tuning Fiber Alignment to Achieve Mechanical Anisotropy on Polymeric Electrospun Scaffolds for Cardiovascular Tissue Engineering

机译:调整纤维排列以在用于心血管组织工程的聚合物电纺支架上实现机械各向异性

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Background: Soft tissues are characterized by strong mechanical anisotropy, as a result of internal fiber architecture, matching the needs of mechanical function in each body part. Polymeric grafts, used for diseased tissues replacement, suffer from mechanical mismatch with the tissues replaced and the remaining healthy tissues to be connected. Electrospinning is an attractive technique by which we can produce biodegradable polymeric scaffolds for tissue engineering applications. Fiber characteristics and structural architecture has to be tuned to match mechanically the tissues to be replaced. Furthermore, for the design of fibrous scaffolds, other characteristics, like fiber diameter, porosity and hydrophilicity play an important role as far as cell atraction, function and tissue regeneration are concerned.Objective: In the present work, we aimed to produce polymeric membranous scaffolds with specific architecture, giving attention to fibers’ orientation and hence, controlling the final mechanical behavior to match that of the physiological tissues to be replaced.Methods: To this end, we used a specifically designed drum collector, with accurate velocity control, and tested different electrospinning parameters (polymeric solution concentrations, transfer rates, rotational speed, etc) to obtain design optimization.Results: Scanning Electron Microscopy on scaffolds showed a good morphology quality. Fiber orientation was directly related to the drum speed. Tensile testing showed mechanical anisotropy in higher speeds. Young’s modulus and Ultimate tensile strength demonstrated strong anisotropy (one order of magnitude larger) in parallel to transverse direction, with regard to drum speed, similar to that of physiologic soft cardiovascular tissues. Scaffold hydrophilicity, expressed by contact angle measurements remained high, although a relation to fiber architecture has been recorded. Conclusion: Enhancement of membranous anisotropy was attained, one order of magnitude greater for the parallel fibers’ direction compared to the transverse one. A similar anisotropy can be found in cardiovascular soft tissues, like human and porcine aortic heart valve leaflets.
机译:背景:由于内部纤维结构的原因,软组织的特点是强烈的机械各向异性,可以满足人体各个部位的机械功能需求。用于替换患病组织的聚合移植物会因机械失配而与被替换的组织以及剩余的健康组织相连。电纺丝是一种有吸引力的技术,通过它我们可以生产用于组织工程应用的可生物降解的聚合物支架。纤维的特性和结构必须调整以机械匹配要更换的组织。此外,对于纤维支架的设计,其他特性,例如纤维直径,孔隙率和亲水性,在细胞吸引,功能和组织再生方面也起着重要作用。目的:在本工作中,我们旨在生产聚合物膜支架具有特定的体系结构,要注意纤维的方向,因此要控制最终的机械性能,使其与要更换的生理组织相匹配。方法:为此,我们使用了专门设计的滚筒收集器,并进行了精确的速度控制,不同的静电纺丝参数(聚合物溶液的浓度,转移速率,转速等)以获得设计优化。结果:支架上的扫描电子显微镜显示出良好的形态质量。纤维取向与转鼓速度直接相关。拉伸测试显示出较高的机械各向异性。在鼓速度方面,杨氏模量和极限拉伸强度在横向方向上表现出很强的各向异性(大一个数量级),类似于生理上柔软的心血管组织。尽管已经记录了与纤维结构的关系,但是通过接触角测量值表示的支架亲水性仍然很高。结论:膜各向异性得到增强,平行纤维的方向比横向的方向大一个数量级。在人类和猪主动脉心脏瓣膜小叶等心血管软组织中也可以发现类似的各向异性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号