...
首页> 外文期刊>Journal of machine learning research >Nonasymptotic convergence of stochastic proximal point methods for constrained convex optimization
【24h】

Nonasymptotic convergence of stochastic proximal point methods for constrained convex optimization

机译:约束凸优化问题的随机近点法的非渐近收敛

获取原文

摘要

A popular approach for solving stochastic optimization problems is the stochastic gradient descent (SGD) method. Although the SGD iteration is computationally cheap and its practical performance may be satisfactory under certain circumstances, there is recent evidence of its convergence difficulties and instability for unappropriate choice of parameters. To avoid some of the drawbacks of SGD, stochastic proximal point (SPP) algorithms have been recently considered. We introduce a new variant of the SPP method for solving stochastic convex problems subject to (in)finite intersection of constraints satisfying a linear regularity condition. For the newly introduced SPP scheme we prove new nonasymptotic convergence results. In particular, for convex Lipschitz continuous objective functions, we prove nonasymptotic convergence rates in terms of the expected value function gap of order $mathcal{O}left(rac{1}{k^{1/2}}ight)$, where $k$ is the iteration counter. We also derive better nonasymptotic convergence rates in terms of expected quadratic distance from the iterates to the optimal solution for smooth strongly convex objective functions, which in the best case is of order $mathcal{O}left(rac{1}{k}ight)$. Since these convergence rates can be attained by our SPP algorithm only under some natural restrictions on the stepsize, we also introduce a restarting variant of SPP that overcomes these difficulties and derive the corresponding nonasymptotic convergence rates. Numerical evidence supports the effectiveness of our methods in real problems.
机译:解决随机优化问题的一种流行方法是随机梯度下降(SGD)方法。尽管SGD迭代在计算上很便宜,并且在某些情况下其实际性能可能令人满意,但是最近有证据表明,由于参数选择不当,其收敛困难且不稳定。为了避免SGD的某些缺点,最近已经考虑了随机近点(SPP)算法。我们介绍了一种SPP方法的新变种,用于解决随机凸问题,该问题要满足(满足)线性正则条件的有限约束交集。对于新引入的SPP方案,我们证明了新的非渐近收敛结果。特别是,对于凸Lipschitz连续目标函数,我们用$ mathcal {O} left( frac {1} {k ^ {1/2}} right阶的期望值函数间隙证明了非渐近收敛速度)$,其中$ k $是迭代计数器。我们还从迭代到平滑强凸目标函数的最优解的期望二次距离方面,得出了更好的非渐近收敛速度,在最佳情况下,阶次为$ mathcal {O} left( frac {1} { k} right)$。由于仅在步长的某些自然限制下才能通过我们的SPP算法获得这些收敛速度,因此我们还引入了SPP的重新启动变体,它克服了这些困难并得出了相应的非渐近收敛速度。数值证据支持我们的方法在实际问题中的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号