...
首页> 外文期刊>Journal of Fluid Science and Technology >Numerical Prediction of Cavitation Erosion Intensity in Cavitating Flows around a Clark Y 11.7% Hydrofoil
【24h】

Numerical Prediction of Cavitation Erosion Intensity in Cavitating Flows around a Clark Y 11.7% Hydrofoil

机译:Clark Y 11.7%水翼周围空化流中空蚀强度的数值预测

获取原文
           

摘要

A numerical prediction method of cavitation erosion is proposed. In this method, the analysis of bubbles in cavitating flows is performed and the intensity of cavitation erosion is evaluated by the impact pressure induced by spherical bubble collapse. In the present study, two-dimensional cavitating flow around the Clark Y 11.7 % hydrofoil is used to examine the proposed numerical prediction method. The proposed numerical method predicts that the intensities of cavitation erosion in noncavitating, attached cavitating and pseudo-supercavitating flows are far weaker than the intensity of cavitation erosion in a transient cavitating flow, and the intensity in the vicinity of the sheet cavity termination is high. These results correspond well to experimental results, and it is confirmed that systematic erosion characteristics are generally captured by this method. Furthermore, the velocity dependence of cavitation erosion is examined, and it is found that the exponent n in the relation between the intensity I and main flow velocity U _(in) (I ∝ U _(in)~(n )) becomes large when the bubble radius is large and ranges between 4.3 and 7.0 in the present study. According to the bubble dynamics, the ambient pressure and the rate of increases in pressure increase as the main flow velocity, and the maximum internal pressure increase. Therefore, it is thought that smaller bubbles cause cavitation erosion when the main flow velocity is large.
机译:提出了一种空化侵蚀的数值预测方法。在这种方法中,对空化流中的气泡进行分析,并通过球形气泡塌陷引起的冲击压力来评估空化侵蚀的强度。在本研究中,克拉克Y 11.7%水翼周围的二维空化流用于检验所提出的数值预测方法。所提出的数值方法预测,非空化流,附着空化流和拟超空化流中的空化侵蚀强度远小于瞬时空化流中的空化侵蚀强度,并且在板腔终止处附近的强度较高。这些结果与实验结果非常吻合,并且证实了该方法通常可以捕获系统的腐蚀特征。此外,研究了气蚀的速度依赖性,发现强度 I与主流流速 U _(in)( I ∝当气泡半径较大时,U_(in)〜(n))变大,在本研究中范围为4.3至7.0。根据气泡动力学,环境压力和压力增加率随主要流速而增加,并且最大内部压力增加。因此,认为当主流流速大时,较小的气泡引起气蚀。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号