首页> 外文期刊>Journal of Computational Surgery >Towards real-time communication between in vivo neurophysiological data sources and simulator-based brain biomimetic models
【24h】

Towards real-time communication between in vivo neurophysiological data sources and simulator-based brain biomimetic models

机译:致力于实现 in vivo 神经生理数据源与基于模拟器的大脑仿生模型之间的实时通信

获取原文
           

摘要

Development of more sophisticated implantable brain-machine interface (BMI) will require both interpretation of the neurophysiological data being measured and subsequent determination of signals to be delivered back to the brain. Computational models are the heart of the machine of BMI and therefore an essential tool in both of these processes. One approach is to utilize brain biomimetic models (BMMs) to develop and instantiate these algorithms. These then must be connected as hybrid systems in order to interface the BMM with in vivo data acquisition devices and prosthetic devices. The combined system then provides a test bed for neuroprosthetic rehabilitative solutions and medical devices for the repair and enhancement of damaged brain. We propose here a computer network-based design for this purpose, detailing its internal modules and data flows. We describe a prototype implementation of the design, enabling interaction between the Plexon Multichannel Acquisition Processor (MAP) server, a commercial tool to collect signals from microelectrodes implanted in a live subject and a BMM, a NEURON-based model of sensorimotor cortex capable of controlling a virtual arm. The prototype implementation supports an online mode for real-time simulations, as well as an offline mode for data analysis and simulations without real-time constraints, and provides binning operations to discretize continuous input to the BMM and filtering operations for dealing with noise. Evaluation demonstrated that the implementation successfully delivered monkey spiking activity to the BMM through LAN environments, respecting real-time constraints.
机译:开发更复杂的植入式脑机接口(BMI)既需要解释所测量的神经生理学数据,又需要确定要传递回大脑的信号。计算模型是BMI机器的核心,因此在这两个过程中都是必不可少的工具。一种方法是利用大脑仿生模型(BMM)来开发和实例化这些算法。然后必须将它们作为混合系统进行连接,以使BMM与体内数据采集设备和假体设备对接。然后,该组合系统为神经假体康复解决方案提供了测试平台,并为受损大脑的修复和增强提供了医疗设备。为此,我们在此提出一种基于计算机网络的设计,详细介绍其内部模块和数据流。我们描述了该设计的原型实现,从而实现了Plexon多通道采集处理器(MAP)服务器(一种用于从植入活体的微电极中收集信号的商业工具)与BMM之间的交互作用,BMM是一种基于NEURON的感觉运动皮层模型,能够控制虚拟手臂。原型实现支持在线模式进行实时仿真,以及离线模式进行数据分析和模拟,而没有实时限制,并提供合并操作以离散化BMM的连续输入和滤波操作以处理噪声。评估表明,该实现在遵守实时约束的前提下,通过LAN环境成功地向BMM传递了长钉活动。

著录项

相似文献

  • 外文文献
  • 专利