...
首页> 外文期刊>Journal of Computational Science and Technology >Three-Dimensional Free-Flight Analysis of the Rapid Turning of a Dragonfly Using Fluid-Structure Interaction Analysis
【24h】

Three-Dimensional Free-Flight Analysis of the Rapid Turning of a Dragonfly Using Fluid-Structure Interaction Analysis

机译:基于流固耦合分析的蜻蜓快速转向的三维自由飞行分析

获取原文
   

获取外文期刊封面封底 >>

       

摘要

References(20) Recent studies of the flapping flight of insects have succeeded in solving the unsteady aerodynamics of hovering and contributed to realizing bio-inspired micro aerial vehicles (MAVs). However, the effect of wing deformation on the aerodynamics has not been investigated because of a lack of appropriate analysis methods. As an initial step to creating a “total” simulator for flapping flight, we developed a free-flight simulator by combining fluid-structure interaction finite element analysis based on the arbitrary Lagrangian-Eulerian method, which can quantitatively treat the strong interaction between the wing deformation and its surrounding airflow, and a rigid body dynamics analytical solver. With biologically-inspired flapping motion, which mimicked the changes in the stroke motion of the wing, the numerical model of the dragonfly performed rapid turning over 1200°/s of yaw angular velocity. Although the flapping motion for the left wing on the trigger flapping and the right wing on the resumed flapping (or its inversed combination) are identical, a considerable difference in the deformation of the wing during this identical flapping between the former and latter halves of the turn was observed. Thus, while these actuations were identical, the directions of the aerodynamic forces were largely controlled by passive deformations of the wings. These results meant that the effect of wing deformation on its aerodynamics should be taken into account and thus fluid-structure interaction analysis is required to effectively design the actuation of the wing on an artificial MAV.
机译:参考文献(20)昆虫拍打飞行的最新研究成功地解决了悬停的不稳定空气动力学问题,并有助于实现生物启发的微型飞行器(MAV)。然而,由于缺乏合适的分析方法,机翼变形对空气动力学的影响尚未得到研究。作为创建用于扑翼飞行的“总”模拟器的第一步,我们通过结合基于任意拉格朗日-欧拉方法的流固耦合有限元分析,开发了一种自由飞行模拟器,可以定量地处理机翼之间的强相互作用。变形及其周围的气流,以及刚体动力学分析求解器。通过仿生拍打运动(模仿机翼冲程运动的变化),蜻蜓的数值模型在1200°/ s的偏航角速度上进行了快速翻转。尽管扳机襟翼上的左翼和恢复襟翼上的右翼(或其反向组合)的襟翼运动是相同的,但是在相同的襟翼期间,前半部和后半部之间的机翼变形存在相当大的差异。观察到转弯。因此,尽管这些致动是相同的,但是空气动力的方向在很大程度上受到机翼被动变形的控制。这些结果意味着应考虑机翼变形对其空气动力学的影响,因此需要进行流体-结构相互作用分析,以有效地设计基于人造MAV的机翼驱动装置。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号