首页> 外文期刊>Journal of Clinical and Basic Cardiology (Print): an independent international scientific journal >Ultraweak Electromagnetic Fields and Sub-Atomic Dynamics - A Possible Subset of Signal-Transduction and -Storage Mechanisms in the Cardiovascular System (Non-Linearity, Small Scale Fluctuations and Predictive Aspects
【24h】

Ultraweak Electromagnetic Fields and Sub-Atomic Dynamics - A Possible Subset of Signal-Transduction and -Storage Mechanisms in the Cardiovascular System (Non-Linearity, Small Scale Fluctuations and Predictive Aspects

机译:超弱电磁场和亚原子动力学-心血管系统中信号传导和存储机制的可能子集(非线性,小范围波动和预测方面)

获取原文
           

摘要

Ultraweak electromagnetic fields, charges and fluxes constitute a basic principle of life (here intentionally termed "animated matter"). Influencing these minimal charges and fluxes locally through ultraweak fields/radiation/photon emission elicited by external sources at given wave lengths, bandwidths and field strength may constitute an important therapeutic tool in the future. The multitude of possible mediators in this context may, however, also explain the difficulty in assessing direct cause and effect chains – in other words, summary vectors may bring about very heterogenous responses in different subjects. However, the latter may be well expressed in heart rate variability and, using non-linear algorithms, these may be decoded one day and served as an important and highly sensitive diagnostic tool. Heart rate spectral analysis and DFA of HRV constitute a powerful non-invasive tool for quantifying autonomic nervous system activity and responsiveness yielding important information about sino-atrial response to autonomic input as a biophysical surrogate for complex autonomous signal proceeding and interaction. Routine application of DFA in high resolution HRV to clinical cardiovascular medicine needs further investigation. Nevertheless, it is likely to become an important procedure in cardiovascular risk stratification in the years to come. While, on the one hand, the main focus of magnetic resonance techniques has been directed to imaging and diagnostic purposes up to now, one may anticipate that, on the other hand, deeper understandig of electromagnetic/quantum physical properties of animated matter (biological and biophysical processes) would inevitably lead to the therapeutic use of defined electromagnetic- and radio-waves: Such exposure to calculable, locally induced currents may cause elicitation of specific, predictable biochemical and biophysical reactions in deeper layers of the tissue. Or, in more simple terms, understanding the coherent wave structure of the quantum physical alterations within defined time segments during biochemical/biophysical cellular reactions, one may be able to influence those directly using waves (electromagnetic/radio/photons) instead of matter (chemicals).
机译:超弱的电磁场,电荷和磁通量构成生命的基本原理(在此有意称为“动画”)。在给定的波长,带宽和场强下,通过外部源引起的超弱磁场/辐射/光子发射,局部影响这些最小电荷和通量可能会成为将来的重要治疗手段。但是,在这种情况下,众多可能的介体也可能解释了评估直接因果关系链的困难–换句话说,汇总载体可能在不同主题中带来非常不同的反应。但是,后者可以在心率变异性中很好地表达,并且使用非线性算法,可以在一天之内将其解码并用作重要且高度敏感的诊断工具。 HRV的心率频谱分析和DFA构成了强大的无创工具,可用于量化自主神经系统的活动和反应能力,从而产生有关窦房对自主输入的反应的重要信息,作为复杂的自主信号进行和交互的生物物理替代方法。在高分辨率HRV中将DFA常规应用到临床心血管医学需要进一步研究。然而,在未来几年中,它很可能会成为心血管风险分层的重要程序。一方面,迄今为止,磁共振技术的主要重点一直集中在成像和诊断目的,但另一方面,人们可以预期,对动画物质的电磁/量子物理特性(生物学和生物物理过程)将不可避免地导致特定电磁波和无线电波的治疗用途:这种暴露于可计算的局部感应电流可能会引起组织深层特定,可预测的生物化学和生物物理反应。或者,用更简单的术语来说,了解生化/生物物理细胞反应过程中定义时间段内量子物理变化的相干波结构,人们可能能够直接使用波(电磁/无线电/光子)而不是物质(化学物质)影响那些)。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号