...
首页> 外文期刊>Journal of Advances in Modeling Earth Systems >Key Elements of Turbulence Closures for Simulating Deep Convection at Kilometer‐Scale Resolution
【24h】

Key Elements of Turbulence Closures for Simulating Deep Convection at Kilometer‐Scale Resolution

机译:在千米尺度分辨率下模拟深对流的湍流闭塞的关键要素

获取原文

摘要

Kilometer‐scale grid spacing is increasingly being used in regional numerical weather prediction and climate simulation. This resolution range is in the terra incognita, where energetic eddies are partially resolved and turbulence parameterization is a challenge. The Smagorinsky and turbulence kinetic energy 1.5‐order models are commonly used at this resolution range, but, as traditional eddy‐diffusivity models, they can only represent forward‐scattering turbulence (downgradient fluxes), whereas the dynamic reconstruction model (DRM), based on explicit filtering, permits countergradient fluxes. Here we perform large‐eddy simulation of deep convection with 100‐m horizontal grid spacing and use these results to evaluate the performance of turbulence schemes at 1‐km horizontal resolution. The Smagorinsky and turbulence kinetic energy 1.5 schemes produce large‐amplitude errors at 1‐km resolution, due to excessively large eddy diffusivities attributable to the formulation of the squared moist Brunt‐V?is?l? frequency ( ). With this formulation in cloudy regions, eddy diffusivity can be excessively increased in “unstable” regions, which produce downward (downgradient) heat flux in a conditionally unstable environment leading to destabilization and further amplification of eddy diffusivities. A more appropriate criterion based on saturation mixing ratio helps eliminate this problem. However, shallow clouds cannot be simulated well in any case at 1‐km resolution with the traditional models, whereas DRM allows for countergradient heat flux for both shallow and deep convection and predicts the distribution of clouds and fluxes satisfactorily. This is because DRM employs an eddy diffusivity model that is dynamically adjusted and a reconstruction approach that allows countergradient fluxes.
机译:千米尺度的网格间距正越来越多地用于区域数值天气预报和气候模拟中。此分辨率范围位于terra incognita,其中高能涡旋得到部分解决,湍流参数化成为一个挑战。 Smagorinsky和湍流动能1.5阶模型通常在此分辨率范围内使用,但是,作为传统的涡流扩散模型,它们只能表示前向散射湍流(下降通量),而动态重建模型(DRM)基于在显式过滤时,允许反梯度通量。在这里,我们使用水平网格间距为100 m的深对流进行大涡模拟,并使用这些结果评估水平分辨率为1 km时湍流方案的性能。 Smagorinsky和湍流动能1.5方案在1 km分辨率下会产生大振幅误差,这是由于平方湿润Brunt-V?is?l?的公式产生了过大的涡流扩散。频率 ( )。通过在多云区域中使用此公式,涡流扩散率可以在“不稳定”区域中过度增加,这会在条件不稳定的环境中产生向下(下降)的热通量,从而导致不稳定并进一步扩大涡流扩散率。基于饱和混合比的更合适的标准有助于消除此问题。但是,在任何情况下,传统模型都无法以1 km的分辨率很好地模拟浅云,而DRM允许浅对流和深对流的反梯度热通量,并可以令人满意地预测云和通量的分布。这是因为DRM采用了动态调整的涡流扩散率模型和允许反梯度通量的重构方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号