...
首页> 外文期刊>The Journal of biological chemistry >Distinct human α(1,3)-fucosyltransferases drive Lewis-X/sialyl Lewis-X assembly in human cells
【24h】

Distinct human α(1,3)-fucosyltransferases drive Lewis-X/sialyl Lewis-X assembly in human cells

机译:不同的人类α(1,3)-岩藻糖基转移酶驱动人类细胞中的Lewis-X /唾液酸化Lewis-X组装

获取原文
           

摘要

In humans, six α(1,3)-fucosyltransferases (α(1,3)-FTs: FT3/FT4/FT5/FT6/FT7/FT9) reportedly fucosylate terminal lactosaminyl glycans yielding Lewis-X (LeX; CD15) and/or sialyl Lewis-X (sLeX; CD15s), structures that play key functions in cell migration, development, and immunity. Prior studies analyzing α(1,3)-FT specificities utilized either purified and/or recombinant enzymes to modify synthetic substrates under nonphysiological reaction conditions or molecular biology approaches wherein α(1,3)-FTs were expressed in mammalian cell lines, notably excluding investigations using primary human cells. Accordingly, although significant insights into α(1,3)-FT catalytic properties have been obtained, uncertainty persists regarding their human LeX/sLeX biosynthetic range across various glycoconjugates. Here, we undertook a comprehensive evaluation of the lactosaminyl product specificities of intracellularly expressed α(1,3)-FTs using a clinically relevant primary human cell type, mesenchymal stem cells. Cells were transfected with modified mRNA encoding each human α(1,3)-FT, and the resultant α(1,3)-fucosylated lactosaminyl glycoconjugates were analyzed using a combination of flow cytometry and MS. The data show that biosynthesis of sLeX is driven by FTs-3, -5, -6, and -7, with FT6 and FT7 having highest potency. FT4 and FT9 dominantly biosynthesize LeX, and, among all FTs, FT6 holds a unique capacity in creating sLeX and LeX determinants across protein and lipid glycoconjugates. Surprisingly, FT4 does not generate sLeX on glycolipids, and neither FT4, FT6, nor FT9 synthesizes the internally fucosylated sialyllactosamine VIM-2 (CD65s). These results unveil the relevant human lactosaminyl glycans created by human α(1,3)-FTs, providing novel insights on how these isoenzymes stereoselectively shape biosynthesis of vital glycoconjugates, thereby biochemically programming human cell migration and tuning human immunologic and developmental processes.
机译:在人类中,据报道有六个α(1,3)-岩藻糖基转移酶(α(1,3)-FTs:FT3 / FT4 / FT5 / FT6 / FT7 / FT9)岩藻糖基末端乳糖胺基聚糖产生Lewis-X(LeX; CD15)和/或唾液酸化的Lewis-X(sLeX; CD15s),在细胞迁移,发育和免疫中起关键作用的结构。以前的研究分析α(1,3)-FT特异性的方法是在非生理反应条件下或分子生物学方法中使用纯化的和/或重组的酶修饰合成底物,其中α(1,3)-FT在哺乳动物细胞系中表达,尤其是排除使用人类原代细胞进行的研究。因此,尽管已经获得了对α(1,3)-FT催化性能的重要见解,但是关于它们在各种糖缀合物上的人类LeX / sLeX生物合成范围仍然存在不确定性。在这里,我们进行了使用临床相关的主要人类细胞类型,间充质干细胞对胞内表达的α(1,3)-FTs的乳糖胺产品特异性的全面评估。用编码每个人α(1,3)-FT的修饰mRNA转染细胞,并使用流式细胞仪和MS结合分析所得的α(1,3)-岩藻糖基化乳糖胺基糖缀合物。数据显示,sLeX的生物合成受FTs-3,-5,-6和-7的驱动,而FT6和FT7的效力最高。 FT4和FT9主要生物合成LeX,在所有FT中,FT6在创建跨蛋白质和脂质糖缀合物的sLeX和LeX决定簇方面具有独特的能力。令人惊讶的是,FT4不会在糖脂上生成sLeX,FT4,FT6或FT9都不合成内部岩藻糖基化唾液酸神经酰胺VIM-2(CD65s)。这些结果揭示了由人α(1,3)-FTs产生的相关人乳糖胺基聚糖,为这些同工酶如何立体选择性地塑造重要糖缀合物的生物合成提供了新的见解,从而通过生物化学方法编程人细胞迁移并调节人的免疫和发育过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号