...
首页> 外文期刊>The Journal of biological chemistry >Small teams of myosin Vc motors coordinate their stepping for efficient cargo transport on actin bundles
【24h】

Small teams of myosin Vc motors coordinate their stepping for efficient cargo transport on actin bundles

机译:肌球蛋白Vc电机小团队协调步伐,以通过肌动蛋白束有效运输货物

获取原文

摘要

Myosin Vc (myoVc) is unique among vertebrate class V myosin isoforms in that it requires teams of motors to move continuously on single actin filaments. Single molecules of myoVc cannot take multiple hand-over-hand steps from one actin-binding site to the next without dissociating, in stark contrast to the well studied myosin Va (myoVa) isoform. At low salt, single myoVc motors can, however, move processively on actin bundles, and at physiologic ionic strength, even teams of myoVc motors require actin bundles to sustain continuous motion. Here, we linked defined numbers of myoVc or myoVa molecules to DNA nanostructures as synthetic cargos. Using total internal reflectance fluorescence microscopy, we compared the stepping behavior of myoVc versus myoVa ensembles and myoVc stepping patterns on single actin filaments versus actin bundles. Run lengths of both myoVc and myoVa teams increased with motor number, but only multiple myoVc motors showed a run-length enhancement on actin bundles compared with actin filaments. By resolving the stepping behavior of individual myoVc motors with a quantum dot bound to the motor domain, we found that coupling of two myoVc motors significantly decreased the futile back and side steps that were frequently observed for single myoVc motors. Changes in the inter-motor distance between two coupled myoVc motors affected stepping dynamics, suggesting that mechanical tension coordinates the stepping behavior of two myoVc motors for efficient directional motion. Our study provides a molecular basis to explain how teams of myoVc motors are suited to transport cargos such as zymogen granules on actin bundles.
机译:肌球蛋白Vc(myoVc)在脊椎动物V类肌球蛋白同工型中是独特的,因为它要求电机团队在单个肌动蛋白丝上连续运动。与经过充分研究的肌球蛋白Va(myoVa)同工型形成鲜明对比的是,单分子的myoVc不能从一个肌动蛋白结合位点采取多个移交步骤,而不会解离下一个。但是,在低盐下,单个myoVc马达可以在肌动蛋白束上进行性运动,并且在生理离子强度下,即使成组的myoVc马达也需要肌动蛋白束来维持连续运动。在这里,我们将定义数量的myoVc或myoVa分子链接到DNA纳米结构作为合成货物。使用全内反射荧光显微镜,我们比较了myoVc与myoVa集合体的步进行为以及单肌动蛋白丝与肌动蛋白束的myoVc步进模式。 myoVc和myoVa团队的运行长度均随电机数量的增加而增加,但是与肌动蛋白丝相比,只有多个myoVc电机对肌动蛋白束的运行长度有所增加。通过用绑定到电机域的量子点解决单个myoVc电机的步进行为,我们发现两个myoVc电机的耦合显着减少了单MyoVc电机经常观察到的徒劳的后退和侧向步伐。两个耦合的MyoVc电动机之间的电动机间距离的变化会影响步进动力学,这表明机械张力可以协调两个MyoVc电动机的步进行为,从而实现有效的定向运动。我们的研究提供了分子基础来解释myoVc电机团队如何适合在肌动蛋白束上运输诸如酶原颗粒的货物。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号