首页> 外文期刊>Disease models & mechanisms: DMM >Hypoxia promotes liver-stage malaria infection in primary human hepatocytes in vitro
【24h】

Hypoxia promotes liver-stage malaria infection in primary human hepatocytes in vitro

机译:低氧促进体外人原代肝细胞的肝期疟疾感染

获取原文
           

摘要

Homeostasis of mammalian cell function strictly depends on balancing oxygen exposure to maintain energy metabolism without producing excessive reactive oxygen species. In vivo , cells in different tissues are exposed to a wide range of oxygen concentrations, and yet in vitro models almost exclusively expose cultured cells to higher, atmospheric oxygen levels. Existing models of liver-stage malaria that utilize primary human hepatocytes typically exhibit low in vitro infection efficiencies, possibly due to missing microenvironmental support signals. One cue that could influence the infection capacity of cultured human hepatocytes is the dissolved oxygen concentration. We developed a microscale human liver platform comprised of precisely patterned primary human hepatocytes and nonparenchymal cells to model liver-stage malaria, but the oxygen concentrations are typically higher in the in vitro liver platform than anywhere along the hepatic sinusoid. Indeed, we observed that liver-stage Plasmodium parasite development in vivo correlates with hepatic sinusoidal oxygen gradients. Therefore, we hypothesized that in vitro liver-stage malaria infection efficiencies might improve under hypoxia. Using the infection of micropatterned co-cultures with Plasmodium berghei , Plasmodium yoelii or Plasmodium falciparum as a model, we observed that ambient hypoxia resulted in increased survival of exo-erythrocytic forms (EEFs) in hepatocytes and improved parasite development in a subset of surviving EEFs, based on EEF size. Further, the effective cell surface oxygen tensions (pO2) experienced by the hepatocytes, as predicted by a mathematical model, were systematically perturbed by varying culture parameters such as hepatocyte density and height of the medium, uncovering an optimal cell surface pO2 to maximize the number of mature EEFs. Initial mechanistic experiments revealed that treatment of primary human hepatocytes with the hypoxia mimetic, cobalt(II) chloride, as well as a HIF-1α activator, dimethyloxalylglycine, also enhance P. berghei infection, suggesting that the effect of hypoxia on infection is mediated in part by host-dependent HIF-1α mechanisms.
机译:哺乳动物细胞功能的稳态严格取决于平衡氧气暴露量,以维持能量代谢而不会产生过多的活性氧。在体内,不同组织中的细胞会暴露于广泛的氧气浓度下,然而体外模型几乎专门将培养的细胞暴露于更高的大气氧气水平下。现有的利用原代人肝细胞的肝期疟疾模型通常表现出较低的体外感染效率,这可能是由于缺少微环境支持信号所致。可能影响培养的人肝细胞感染能力的一个提示是溶解氧浓度。我们开发了由精确图案化的原代人肝细胞和非实质细胞组成的微型人肝平台,以对肝阶段疟疾进行建模,但是体外肝平台中的氧气浓度通常比沿肝窦的任何地方都要高。确实,我们观察到体内肝脏阶段疟原虫的寄生虫发育与肝正弦氧梯度相关。因此,我们假设在缺氧条件下体外肝阶段疟疾感染效率可能会提高。以伯氏疟原虫,约氏疟原虫或恶性疟原虫的微模式共培养物感染为模型,我们观察到环境缺氧导致肝细胞中外红细胞形式(EEF)的存活率增加,并且在存活的一部分EEF中改善了寄生虫的发育。 ,基于EEF大小。此外,数学模型预测的肝细胞所经历的有效细胞表面氧张力(pO2)通过改变培养参数(例如肝细胞密度和培养基高度)被系统地扰动,从而发现了最佳的细胞表面pO2以使数量最大化成熟的EEF。初步的机械实验表明,用低氧模拟物氯化钴(II)以及HIF-1α活化剂二甲基草酰甘氨酸处理原代人肝细胞,也会增强伯氏疟原虫感染,这表明低氧对感染的影响是通过部分是由依赖宿主的HIF-1α机制引起的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号