首页> 外文期刊>Disease models & mechanisms: DMM >First person – Emily Jones, Zoe Matthews and Lejla Gul
【24h】

First person – Emily Jones, Zoe Matthews and Lejla Gul

机译:第一人称视角–艾米丽·琼斯(Emily Jones),佐伊·马修斯(Zoe Matthews)和莱拉·古尔(Lejla Gul)

获取原文
       

摘要

First Person is a series of interviews with the first authors of a selection of papers published in Disease Models & Mechanisms (DMM), helping early-career researchers promote themselves alongside their papers. Emily Jones, Zoe Matthews and Lejla Gul are co-first authors on ‘ Integrative analysis of Paneth cell proteomic and transcriptomic data from intestinal organoids reveals functional processes dependent on autophagy ’, published in DMM. Emily is a postdoctoral research scientist in the lab of Professor Simon Carding at Quadram Institute, Norwich, UK, investigating host-microbe interactions at the intestinal epithelial barrier. Zoe is a medical student (research completed during PhD) in the lab of Prof. Tom Wileman at Biomedical Research Centre, University of East Anglia, Norwich, UK, investigating stem cell biology, focussing on the small intestine. Lejla is a PhD student in the lab of Dr Tamas Korcsmaros at Earlham Institute, Norwich, UK, investigating the effects of environmental (e.g. microbes) and genetic factors on the human autophagy process. Emily Jones, Zoe Matthews and Lejla Gul How would you explain the main findings of your paper to non-scientific family and friends? EJ & ZM: Our work combined experimental biology and computational analysis. We started out in a lab, growing mini-guts (3D organoid cell cultures that mimic the intestine). We had two types of organoids: those that acted like a normal healthy small intestine and those that had an abnormality in a recycling protein (lack of the Atg16l1 gene). This deficient model is relevant to study Crohn's disease (CD), which is an inflammatory condition of the gastrointestinal tract, as patients suffering from CD have an altered form of this gene. We aimed to investigate the effect of Atg16l1 knockout on cellular functions using an organoid culture model. LG: To prove our hypothesis, we developed a method combining both computational and experimental biology. We used this new pipeline to assess the effect of the Atg16l1 knockout, which causes autophagy impairment. Autophagy is a cellular degradation process targeting organelles, pathogens and specific proteins. We predicted the effect of protein-level changes due to autophagy impairment on cellular functional processes. We measured the quantity of proteins showing different abundances in organoids lacking the Atg16l1 gene, compared with wild types. Following data analysis, we identified functions that could have potentially been altered, and verified these experimentally. What are the potential implications of these results for your field of research? CD affects millions of people worldwide, but currently there is no cure for the disease. We have generated a Paneth-cell-enriched 3D organoid system to model the potential changes during the disease and discover the molecular background. We have implemented a bioinformatic pipeline to analyse systems-level changes in intestinal cells. As a result, potential functional changes related to CD were discovered, providing greater insight into the underlying mechanisms and aetiology of CD, and hopefully bringing research closer to an effective long-term treatment for patients. “Potential functional changes related to CD were discovered, providing greater insight into the underlying mechanisms and aetiology of CD, and hopefully bringing research closer to an effective long-term treatment for patients.” What are the main advantages and drawbacks of the model system you have used as it relates to the disease you are investigating? Organoids grown from intestinal stem cells differentiate into all the cells of the intestinal epithelium, providing a useful laboratory model, both in terms of structure and function. Creating and using cell-type-specific enriched systems helps us to discover in vivo processes in an in vitro environment, thereby giving a nearly true insight into protein abundance changes in Paneth cells. The drawbacks of lineage-directing organoids into Paneth cells is that the final cultures are not pure – some stem cells remain, keeping the organoids alive. Also, here we have investigated a model system lacking the Atg16l1 gene, while in CD patients the ATG16L1 gene is in a mutated form. Therefore, the knockout model we used can be considered as an extreme model, where autophagy is impaired.
机译:《第一人称》是对一系列发表在《疾病模型与机制》(DMM)上的论文的第一作者的一系列采访,有助于早期职业研究人员与他们的论文一起发展自我。艾米丽·琼斯(Emily Jones),佐伊·马修斯(Zoe Matthews)和莱拉·古尔(Lejla Gul)是第一作者,发表于DMM上的“肠道类器官的Paneth细胞蛋白质组和转录组数据的综合分析揭示了依赖自噬的功能过程”。艾米丽(Emily)是英国诺里奇Quadram研究所西蒙·卡丁(Simon Carding)教授实验室的博士后研究科学家,主要研究肠道上皮屏障中的宿主微生物相互作用。 Zoe是英国诺里奇东英吉利大学生物医学研究中心的Tom Wileman教授实验室的医学生(在博士期间完成研究),主要研究小细胞的干细胞生物学。 Lejla是英国诺里奇厄尔勒姆研究所Tamas Korcsmaros博士实验室的博士研究生,研究环境(例如微生物)和遗传因素对人类自噬过程的影响。艾米丽·琼斯(Emily Jones),佐伊·马修斯(Zoe Matthews)和莱拉·古尔(Lejla Gul)您将如何向非科学的家人和朋友解释论文的主要发现? EJ&ZM:我们的工作结合了实验生物学和计算分析。我们从实验室开始,不断发展小肠(模仿肠道的3D类器官细胞培养物)。我们有两种类器官:像正常的健康小肠一样工作的类器官,以及循环蛋白异常(缺少Atg16l1基因)的类器官。该缺陷模型​​与研究克罗恩氏病(CD)有关,克罗恩病是胃肠道的炎症性疾病,因为患有CD的患者的这种基因形式发生了改变。我们旨在调查使用类器官培养模型Atg16l1基因敲除对细胞功能的影响。 LG:为证明我们的假设,我们开发了一种将计算生物学和实验生物学相结合的方法。我们使用此新管道评估Atg16l1敲除的作用,该作用会导致自噬受损。自噬是一种针对细胞器,病原体和特定蛋白质的细胞降解过程。我们预测了由于自噬损伤对细胞功能过程的蛋白质水平变化的影响。与野生型相比,我们测量了缺少Atg16l1基因的类器官中显示出不同丰度的蛋白质数量。经过数据分析,我们确定了可能已更改的功能,并通过实验进行了验证。这些结果对您的研究领域有何潜在影响? CD影响全世界的数百万人,但目前尚无法治愈该疾病。我们已经生成了富含Paneth细胞的3D类器官系统,以模拟疾病期间的潜在变化并发现分子背景。我们已经实施了一条生物信息学管道来分析肠道细胞的系统级变化。结果,发现了与CD相关的潜在功能变化,从而为CD的潜在机制和病因学提供了更深入的了解,并有望使研究更接近于对患者进行有效的长期治疗。 “发现了与CD相关的潜在功能性变化,为CD的潜在机制和病因学提供了更深入的了解,并有望使研究更接近对患者的有效长期治疗。”您所使用的模型系统与要研究的疾病相关的主要优缺点是什么?从肠干细胞生长的类器官可分化为肠上皮的所有细胞,从而在结构和功能方面提供了有用的实验室模型。创建和使用特定于细胞类型的富集系统有助于我们在体外环境中发现体内过程,从而对Paneth细胞中蛋白质丰度的变化有了真正的了解。沿袭指导类器官进入Paneth细胞的弊端是最终培养物不是纯净的-保留了一些干细胞,使类器官存活。同样,在这里我们研究了缺少Atg16l1基因的模型系统,而在CD患者中,ATG16L1基因是突变形式。因此,我们使用的基因敲除模型可以被认为是极端的模型,其中自噬被削弱。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号