首页> 外文期刊>Defence science journal >Simulation of Thermo-fluid Interactions in Cryogenic Stage Turbine Startup System Using AUSM+-UP-based Higher-order Accurate Flow Solver
【24h】

Simulation of Thermo-fluid Interactions in Cryogenic Stage Turbine Startup System Using AUSM+-UP-based Higher-order Accurate Flow Solver

机译:基于AUSM + -UP的高阶精确流求解器对低温级涡轮启动系统中的热流体相互作用进行仿真

获取原文
           

摘要

High-speed turbines are used in upper stage liquid engines of launch vehicles and the most common ones include LH2 and LOX turbines used in the cryogenic stages. The main constraints in the design of turbine system for a liquid engine are thermal loads, mass flow and pressure drops in various systems ahead of the turbine inlet. The temperature of the combustion products/gases reaching the turbine blades must be well?below the melting point of the turbine blade material and the mass flow rate must be sufficient to generate the required power. Turbine can be started in two ways, by generating gases using a solid propellant-based spinner motor, and using compressed gases stored in gas bottles. The first method involves design challenges but requires less space and weight. On the other hand, second method is simple but requires more space. Because of the space and weight constraints associated with the upper stages, first method is preferred and discussed in this paper. It consists of a solid propellant-based spinner motor with a convergent-divergent nozzle, a guiding duct connecting nozzle exit, and the turbine inlet manifold in the form of a torroid with nozzle block having 39 guiding nozzles. The combustion products generated by the spinner motor are guided to the manifold through the guiding duct. Inlet manifold acts as a reservoir and supplies hot gases uniformly to the turbine through 39 nozzles. This study addresses the role of? computational fluid dynamics in the design of turbine startup system using unstructured cell-centered AUSM+-UP-based finite volume solver with the twoequation turbulence model. The flow and the thermal characteristics of the solid motor with a convergentdivergent nozzle were studied to evaluate the gas temperature, operating pressure, and flow velocities. The?guiding duct along with the inlet manifold was analysed separately to find the drop in temperature and pressure?within the system. From the simulation results, the mass flow through each guiding nozzle, and hence, energy available could be evaluated to ensure proper functioning of the turbine. Defence Science Journal, 2009,?59(3), pp.215-229 ,?DOI:http://dx.doi.org/10.14429/dsj.59.1515
机译:高速涡轮机用于运载火箭的上级液体发动机,最常见的包括用于低温级的LH2和LOX涡轮机。液体发动机涡轮系统设计的主要限制因素是涡轮入口之前各种系统中的热负荷,质量流量和压降。到达涡轮叶片的燃烧产物/气体的温度必须很好地低于涡轮叶片材料的熔点,并且质量流量必须足以产生所需的功率。涡轮机有两种启动方式,一种是使用基于固体推进剂的旋转电机产生气体,另一种是使用储存在气瓶中的压缩气体。第一种方法涉及设计挑战,但所需的空间和重量较小。另一方面,第二种方法很简单,但需要更多空间。由于与上级相关的空间和重量限制,因此首选第一种方法并在本文中进行讨论。它由带推进喷嘴的固体推进剂旋转电机,连接喷嘴出口的导管和呈环形的涡轮进气歧管组成,喷嘴座带有39个导向喷嘴。微调电动机产生的燃烧产物通过导管被引导到歧管。进气歧管充当储气罐,并通过39个喷嘴将热气均匀地供应到涡轮机。这项研究的作用是什么?涡轮启动系统设计中的计算流体动力学,使用基于非结构单元中心的基于AUSM + -UP的有限体积求解器并带有二方程湍流模型。研究了带有会聚发散喷嘴的固体电动机的流量和热特性,以评估气体温度,工作压力和流速。分别对导流管和进气歧管进行了分析,以发现系统内的温度和压力下降。根据模拟结果,可以评估流过每个导向喷嘴的质量,因此可以评估可用能量,以确保涡轮机正常运行。国防科学杂志,2009,59(3),215-229页,DOI:http://dx.doi.org/10.14429/dsj.59.1515

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号