首页> 外文期刊>Hydrology and Earth System Sciences Discussions >Testing the use of standardised indices and GRACE satellite data to estimate the European 2015 groundwater drought in near-real time
【24h】

Testing the use of standardised indices and GRACE satellite data to estimate the European 2015 groundwater drought in near-real time

机译:测试标准化索引和GRACE卫星数据的使用,以近实时估算欧洲2015年的地下水干旱

获取原文
           

摘要

pstrongAbstract./strong In 2015, central and eastern Europe were affected by a severe drought. This event has recently been studied from meteorological and streamflow perspective, but no analysis of the groundwater situation has been performed. One of the reasons is that real-time groundwater level observations often are not available. In this study, we evaluate two alternative approaches to quantify the 2015 groundwater drought over two regions in southern Germany and eastern Netherlands. The first approach is based on spatially explicit relationships between meteorological conditions and historic groundwater level observations. The second approach uses the Gravity Recovery Climate Experiment (GRACE) terrestrial water storage (TWS) and groundwater anomalies derived from GRACE-TWS and (near-)surface storage simulations by the Global Land Data Assimilation System (GLDAS) models. We combined the monthly groundwater observations from 2040 wells to establish the spatially varying optimal accumulation period between the Standardised Groundwater Index (SGI) and the Standardized Precipitation Evapotranspiration Index (SPEI) at a 0.25?° gridded scale. The resulting optimal accumulation periods range between 1 and more than 24??months, indicating strong spatial differences in groundwater response time to meteorological input over the region. Based on the estimated optimal accumulation periods and available meteorological time series, we reconstructed the groundwater anomalies up to 2015 and found that in Germany a uniform severe groundwater drought persisted for several??months during this year, whereas the Netherlands appeared to have relatively high groundwater levels. The differences between this event and the 2003 European benchmark drought are striking. The 2003 groundwater drought was less uniformly pronounced, both in the Netherlands and Germany. This is because slowly responding wells (the ones with optimal accumulation periods of more than 12??months) still were above average from the wet year of 2002, which experienced severe flooding in central Europe. GRACE-TWS and GRACE-based groundwater anomalies did not capture the spatial variability of the 2003 and 2015 drought events satisfactorily. GRACE-TWS did show that both 2003 and 2015 were relatively dry, but the differences between Germany and the Netherlands in 2015 and the spatially variable groundwater drought pattern in 2003 were not captured. This could be associated with the coarse spatial scale of GRACE. The simulated groundwater anomalies based on GRACE-TWS deviated considerably from the GRACE-TWS signal and from observed groundwater anomalies. The uncertainty in the GRACE-based groundwater anomalies mainly results from uncertainties in the simulation of soil moisture by the different GLDAS models. The GRACE-based groundwater anomalies are therefore not suitable for use in real-time groundwater drought monitoring in our case study regions. The alternative approach based on the spatially variable relationship between meteorological conditions and groundwater levels is more suitable to quantify groundwater drought in near real-time. Compared to the meteorological drought and streamflow drought (described in previous studies), the groundwater drought of 2015 had a more pronounced spatial variability in its response to meteorological conditions, with some areas primarily influenced by short-term meteorological deficits and others influenced by meteorological deficits accumulated over the preceding 2??years or more. In drought management, this information is very useful and our approach to quantify groundwater drought can be used until real-time groundwater observations become readily available./p.
机译:> >摘要。2015年,中欧和东欧受到严重干旱的影响。最近从气象和流量的角度研究了这一事件,但尚未对地下水情况进行分析。原因之一是经常无法获得实时的地下水位观测值。在这项研究中,我们评估了两种替代方法来量化德国南部和荷兰东部两个地区2015年的地下水干旱。第一种方法是基于气象条件与历史地下水位观测值之间在空间上明确的关系。第二种方法使用重力恢复气候实验(GRACE)地面水存储(TWS)和源自GRACE-TWS的地下水异常以及全球土地数据同化系统(GLDAS)模型的(近)地表存储模拟。我们结合了2040口井的每月地下水观测值,以0.25?°网格规模建立了标准化地下水指数(SGI)和标准化降水蒸散指数(SPEI)之间的空间变化的最佳积累期。最佳的积累期为1到24个月以上,表明该地区地下水对气象输入的响应时间存在很大的空间差异。根据估计的最佳累积期和可用的气象时间序列,我们重构了直到2015年的地下水异常,发现德国今年均匀的严重地下水干旱持续了几个月,而荷兰似乎地下水相对较高。水平。此事件与2003年欧洲基准干旱之间的差异令人震惊。在荷兰和德国,2003年的地下水干旱情况不太明显。这是因为响应缓慢的井(最佳积累期超过12个月的井)仍比2002年雨季的平均水平要高,2002年的雨水在中欧遭受了严重的洪灾。 GRACE-TWS和基于GRACE的地下水异常未能令人满意地捕获2003年和2015年干旱事件的空间变异性。 GRACE-TWS确实显示2003年和2015年都相对干旱,但是未捕捉到2015年德国和荷兰之间的差异以及2003年在空间上变化的地下水干旱模式。这可能与GRACE的粗略空间尺度有关。基于GRACE-TWS的模拟地下水异常与GRACE-TWS信号和观测到的地下水异常有很大出入。基于GRACE的地下水异常的不确定性主要是由不同的GLDAS模型在模拟土壤水分中的不确定性造成的。因此,在我们的案例研究区域中,基于GRACE的地下水异常不适用于实时地下水干旱监测。基于气象条件和地下水位之间的空间可变关系的替代方法更适合于近实时地量化地下水干旱。与气象干旱和径流干旱相比(之前的研究已经描述过),2015年的地下水干旱对气象条件的响应具有更明显的空间变异性,其中一些地区主要受到短期气象赤字的影响,而其他地区则受到气象赤字的影响前2年或以上的时间累积。在干旱管理中,此信息非常有用,并且可以使用我们的量化地下水干旱的方法,直到可以随时进行实时地下水观测为止。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号