...
首页> 外文期刊>Hydrology and Earth System Sciences >Global joint assimilation of GRACE and SMOS for improved estimation of root-zone soil moisture and vegetation response
【24h】

Global joint assimilation of GRACE and SMOS for improved estimation of root-zone soil moisture and vegetation response

机译:GRACE和SMOS的全球联合吸收,用于改进对根区土壤水分和植被响应的估算

获取原文

摘要

The lack of direct measurement of root-zone soil moisture poses a challenge to the large-scale prediction of ecosystem response to variation in soil water. Microwave remote sensing capability is limited to measuring moisture content in the uppermost few centimetres of soil. The GRACE (Gravity Recovery and Climate Experiment) mission detected the variability in storage within the total water column. However, root-zone soil moisture cannot be separated from GRACE-observed total water storage anomalies without ancillary information on surface water and groundwater changes. In this study, GRACE total water storage anomalies and SMOS near-surface soil moisture observations were jointly assimilated into a hydrological model globally to better estimate the impact of changes in root-zone soil moisture on vegetation vigour. Overall, the accuracy of root-zone soil moisture estimates through the joint assimilation of surface soil moisture and total water storage retrievals showed improved consistency with ground-based soil moisture measurements and satellite-observed greenness when compared to open-loop estimates (i.e.?without assimilation). For example, the correlation between modelled and in situ measurements of root-zone moisture increased by?0.1 (from?0.48 to?0.58) and?0.12 (from?0.53 to?0.65) on average for grasslands and croplands, respectively. Improved correlations were found between vegetation greenness and soil water storage on both seasonal variability and anomalies over water-limited regions. Joint assimilation results show a more severe deficit in soil water anomalies in eastern Australia, southern India and eastern Brazil over the period of?2010 to?2016 than the open-loop, consistent with the satellite-observed vegetation greenness anomalies. The assimilation of satellite-observed water content contributes to more accurate knowledge of soil water availability, providing new insights for monitoring hidden water stress and vegetation conditions.
机译:缺乏直接测量根区土壤水分的方法,对大规模预测生态系统对土壤水分变化的反应提出了挑战。微波遥感功能仅限于测量土壤最上方几厘米的水分含量。 GRACE(重力恢复和气候实验)任务检测到总水柱内的存储量存在变化。但是,如果没有有关地表水和地下水变化的辅助信息,则无法将GRACE观测到的根区土壤水分与总储水异常区分开。在这项研究中,将GRACE总储水异常和SMOS近地表土壤水分观测值共同纳入全球水文模型,以更好地估算根区土壤水分变化对植被活力的影响。总体而言,与开环估算相比,通过联合吸收表层土壤水分和总储水量得出的根区土壤水分估算的准确性显示,与地面土壤水分测量和卫星观测的绿色相比,一致性得到改善(即无同化)。例如,草原和农田的根区水分模拟和原位测量之间的相关性分别平均增加了0.1(从0.48到0.58)和0.12(从0.53到0.65)。在水分有限区域的季节变化和异常方面,植被绿度与土壤水储量之间的相关性得到改善。联合同化结果表明,在2010年至2016年期间,澳大利亚东部,印度南部和巴西东部的土壤水分异常比开环更为严重,这与卫星观测到的植被绿色异常有关。卫星观测到的水含量的同化有助于更准确地了解土壤水的可用性,从而为监测隐藏的水分胁迫和植被状况提供新的见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号