...
首页> 外文期刊>Hydrology and Earth System Sciences >Surface water acidification and critical loads: exploring the F-factor
【24h】

Surface water acidification and critical loads: exploring the F-factor

机译:地表水酸化和临界负荷:探索F因子

获取原文
           

摘要

As acid deposition decreases, uncertainties in methodsfor calculating critical loads become more important when judgements have tobe made about whether or not further emission reductions are needed. Animportant aspect of one type of model that has been used to calculatesurface water critical loads is the empirical F-factor which estimates thedegree to which acid deposition is neutralised before it reaches a lake atany particular point in time relative to the pre-industrial, steady-statewater chemistry conditions.In this paper we will examine how well the empirical F-functions are able toestimate pre-industrial lake chemistry as lake chemistry changes duringdifferent phases of acidification and recovery. To accomplish this, we usethe dynamic, process-oriented biogeochemical model SAFE to generate aplausible time series of annual runoff chemistry for ca. 140 Swedishcatchments between 1800 and 2100. These annual hydrochemistry data are thenused to generate empirical F-factors that are compared to the "actual"F-factor seen in the SAFE data for each lake and year in the time series.The dynamics of the F-factor as catchments acidify, and then recover are notwidely recognised.Our results suggest that the F-factor approach worked best during theacidification phase when soil processes buffer incoming acidity. However,the empirical functions for estimating F from contemporary lake chemistryare not well suited to the recovery phase when the F-factor turns negativedue to recovery processes in the soil. This happens when acid deposition hasdepleted the soil store of BC, and then acid deposition declines, reducingthe leaching of base cations to levels below those in the pre-industrialera. An estimate of critical load from water chemistry during recovery andempirical F functions would therefore result in critical loads that are toolow. Therefore, the empirical estimates of the F-factor are a significantsource of uncertainty in the estimate of surface water critical loads andrelated calculations for quantifying lake acidification status, especiallynow that acid deposition has declined across large areas of Europe and NorthAmerica.
机译:随着酸沉降的减少,当必须判断是否需要进一步减少排放量时,计算临界负荷的方法中的不确定性变得越来越重要。用来计算地表水临界负荷的一种类型模型的一个重要方面是经验F因子,它估算酸沉积相对于工业化之前的稳定状态在任何特定时间到达湖泊之前被中和的程度。州水化学条件。在本文中,我们将研究随着酸化和恢复的不同阶段中湖化学的变化,经验F函数能够如何很好地估计工业化前的湖化学。为此,我们使用动态的,面向过程的生物地球化学模型SAFE来为CA生成年度径流化学的合理时间序列。在1800年到2100年之间有140个瑞典汇水区。然后使用这些年度水化学数据来生成经验F因子,并将其与SAFE数据中每个湖泊和年份在时间序列中看到的“实际” F因子进行比较。流域酸化后再分解的影响因素尚未得到广泛认可。 我们的结果表明,当土壤过程缓冲传入酸度时,F因子方法在酸化阶段效果最佳。但是,当F因子由于土壤中的恢复过程而变为负值时,从当代湖泊化学中估算F的经验函数并不十分适合恢复阶段。当酸沉积耗尽了BC的土壤储量,然后酸沉积减少,从而将碱性阳离子的浸出降低到工业前期的水平以下时,就会发生这种情况。因此,从恢复过程中的水化学和经验F函数估算临界负荷将导致临界负荷成为工具。因此,F因子的经验估算是估算地表水临界负荷和定量湖泊酸化状态的相关计算不确定性的重要来源,尤其是在欧洲和北美的大部分地区,酸沉降下降的情况下。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号