首页> 外文期刊>Hydrology and Earth System Sciences >Predicting floods in a large karst river basin by coupling PERSIANN-CCS QPEs with a physically based distributed hydrological model
【24h】

Predicting floods in a large karst river basin by coupling PERSIANN-CCS QPEs with a physically based distributed hydrological model

机译:通过将PERSIANN-CCS QPE与基于物理的分布式水文模型相结合来预测大型喀斯特流域的洪水

获取原文
获取外文期刊封面目录资料

摘要

In general, there are no long-term meteorological or hydrological data available for karst river basins. The lack of rainfall data is a great challenge that hinders the development of hydrological models. Quantitative precipitation estimates (QPEs) based on weather satellites offer a potential method by which rainfall data in karst areas could be obtained. Furthermore, coupling QPEs with a distributed hydrological model has the potential to improve the precision of flood predictions in large karst watersheds. Estimating precipitation from remotely sensed information using an artificial neural network-cloud classification system (PERSIANN-CCS) is a type of QPE technology based on satellites that has achieved broad research results worldwide. However, only a few studies on PERSIANN-CCS QPEs have occurred in large karst basins, and the accuracy is generally poor in terms of practical applications. This paper studied the feasibility of coupling a fully physically based distributed hydrological model, i.e., the Liuxihe model, with PERSIANN-CCS QPEs for predicting floods in a large river basin, i.e., the Liujiang karst river basin, which has a watershed area of 58?270?km sup2/sup , in southern China. The model structure and function require further refinement to suit the karst basins. For instance, the sub-basins in this paper are divided into many karst hydrology response units (KHRUs) to ensure that the model structure is adequately refined for karst areas. In addition, the convergence of the underground runoff calculation method within the original Liuxihe model is changed to suit the karst water-bearing media, and the Muskingum routing method is used in the model to calculate the underground runoff in this study. Additionally, the epikarst zone, as a distinctive structure of the KHRU, is carefully considered in the model. The result of the QPEs shows that compared with the observed precipitation measured by a rain gauge, the distribution of precipitation predicted by the PERSIANN-CCS QPEs was very similar. However, the quantity of precipitation predicted by the PERSIANN-CCS QPEs was smaller. A post-processing method is proposed to revise the products of the PERSIANN-CCS QPEs. The karst flood simulation results show that coupling the post-processed PERSIANN-CCS QPEs with the Liuxihe model has a better performance relative to the result based on the initial PERSIANN-CCS QPEs. Moreover, the performance of the coupled model largely improves with parameter re-optimization via the post-processed PERSIANN-CCS QPEs. The average values of the six evaluation indices change as follows: the Nash–Sutcliffe coefficient increases by 14?%, the correlation coefficient increases by 15?%, the process relative error decreases by 8?%, the peak flow relative error decreases by 18?%, the water balance coefficient increases by 8?%, and the peak flow time error displays a 5?h decrease. Among these parameters, the peak flow relative error shows the greatest improvement; thus, these parameters are of the greatest concern for flood prediction. The rational flood simulation results from the coupled model provide a great practical application prospect for flood prediction in large karst river basins.
机译:通常,没有喀斯特河流域的长期气象或水文数据。缺乏降雨数据是一个巨大的挑战,阻碍了水文模型的发展。基于气象卫星的定量降水估计(QPE)提供了一种潜在的方法,通过该方法可以获取喀斯特地区的降雨数据。此外,将QPE与分布式水文模型相结合具有提高大型喀斯特流域洪水预报精度的潜力。使用人工神经网络-云分类系统(PERSIANN-CCS)从遥感信息中估算降水是一种基于卫星的QPE技术,已在全球范围内取得了广泛的研究成果。但是,在大型喀斯特盆地中,仅对PERSIANN-CCS QPE进行过一些研究,在实际应用中,其准确性通常很差。本文研究了将完全基于物理的分布式水文模型(即流溪河模型)与PERSIANN-CCS QPE耦合以预测流域为58的大型流域(即柳江喀斯特流域)洪水的可行性。中国南部,?270?km 2 。模型的结构和功能需要进一步完善以适应岩溶盆地。例如,本文中的子流域被分为许多喀斯特水文响应单元(KHRU),以确保对喀斯特地区的模型结构进行了适当的完善。此外,本研究改变了原有流溪河模型中地下径流计算方法的收敛性,以适应岩溶含水介质,并在模型中采用了Muskingum路径法来计算地下径流。此外,在模型中还仔细考虑了表层岩溶带作为KHRU的独特结构。 QPE的结果表明,与通过雨量计测得的降水相比,PERSIANN-CCS QPE预测的降水分布非常相似。但是,PERSIANN-CCS QPE预测的降水量较小。提出了一种后处理方法来修改PERSIANN-CCS QPE的产品。喀斯特洪水模拟结果表明,与基于初始PERSIANN-CCS QPE的结果相比,将后处理的PERSIANN-CCS QPE与流溪河模型耦合具有更好的性能。此外,通过后处理的PERSIANN-CCS QPE,通过参数重新优化,耦合模型的性能大大提高。六个评估指标的平均值变化如下:Nash-Sutcliffe系数增加14%,相关系数增加15%,过程相对误差减小8%,峰值流量相对误差减小18 Δ%,水平衡系数增加8%,并且峰值流动时间误差显示减少5Δh。在这些参数中,峰值流量相对误差显示出最大的改善。因此,这些参数是洪水预报中最需要关注的问题。耦合模型的合理洪水模拟结果为大型喀斯特流域的洪水预报提供了广阔的实际应用前景。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号