首页> 外文期刊>Hydrology and Earth System Sciences Discussions >Assessment of the Weather Research and Forecasting (WRF) model for simulation of extreme rainfall events in the upper Ganga Basin
【24h】

Assessment of the Weather Research and Forecasting (WRF) model for simulation of extreme rainfall events in the upper Ganga Basin

机译:用于模拟恒河上游极端降雨事件的天气研究和预报(WRF)模型的评估

获取原文
获取外文期刊封面目录资料

摘要

Reliable estimates of extreme rainfall events are necessary for an accurate prediction of floods. Most of the global rainfall products are available at a coarse resolution, rendering them less desirable for extreme rainfall analysis. Therefore, regional mesoscale models such as the advanced research version of the Weather Research and Forecasting (WRF) model are often used to provide rainfall estimates at fine grid spacing. Modelling heavy rainfall events is an enduring challenge, as such events depend on multi-scale interactions, and the model configurations such as grid spacing, physical parameterization and initialization. With this background, the WRF model is implemented in this study to investigate the impact of different processes on extreme rainfall simulation, by considering a representative event that occurred during 15–18?June?2013 over the Ganga Basin in India, which is located at the foothills of the Himalayas. This event is simulated with ensembles involving four different microphysics (MP), two cumulus (CU) parameterizations, two planetary boundary layers (PBLs) and two land surface physics options, as well as different resolutions (grid spacing) within the WRF model. The simulated rainfall is evaluated against the observations from 18 rain gauges and the Tropical Rainfall Measuring Mission Multi-Satellite Precipitation Analysis (TMPA) 3B42RT version 7 data. From the analysis, it should be noted that the choice of MP scheme influences the spatial pattern of rainfall, while the choice of PBL and CU parameterizations influences the magnitude of rainfall in the model simulations. Further, the WRF run with Goddard MP, Mellor–Yamada–Janjic PBL and Betts–Miller–Janjic CU scheme is found to perform best in simulating this heavy rain event. The selected configuration is evaluated for several heavy to extremely heavy rainfall events that occurred across different months of the monsoon season in the region. The model performance improved through incorporation of detailed land surface processes involving prognostic soil moisture evolution in Noah scheme compared to the simple Slab model. To analyse the effect of model grid spacing, two sets of downscaling ratios – (i)?1 : 3, global to regional (G2R) scale and (ii)?1 : 9, global to convection-permitting scale (G2C) – are employed. Results indicate that a higher downscaling ratio (G2C) causes higher variability and consequently large errors in the simulations. Therefore, G2R is adopted as a suitable choice for simulating heavy rainfall event in the present case study. Further, the WRF-simulated rainfall is found to exhibit less bias when compared with the NCEP FiNaL (FNL) reanalysis data.
机译:要准确预测洪水,必须可靠地估算极端降雨事件。大多数全球降雨产品都具有较粗的分辨率,因此对于极端降雨分析不太理想。因此,通常使用区域中尺度模型,例如天气研究和预报(WRF)模型的高级研究版本,以精细的网格间距提供降雨估计。对强降雨事件进行建模是一个持久的挑战,因为此类事件取决于多尺度交互作用以及模型配置(例如网格间距,物理参数设置和初始化)。在此背景下,本研究采用WRF模型,通过考虑印度恒河盆地2013年6月15日至18日发生在印度恒河盆地的一次代表性事件,来研究不同过程对极端降雨模拟的影响。喜马拉雅山的山麓小丘。此事件是通过包含四个不同的微物理学(MP),两个积云(CU)参数化,两个行星边界层(PBL)和两个陆地表面物理学选项以及WRF模型内不同分辨率(网格间距)的合奏来模拟的。根据18个雨量计的观测值和热带降雨测量任务多卫星降水分析(TMPA)3B42RT版本7数据对模拟降雨进行了评估。从分析中应该注意到,MP方案的选择会影响降雨的空间格局,而PBL和CU参数化的选择会影响模型模拟中的降雨量。此外,还发现WRF与Goddard MP,Mellor-Yamada-Janjic PBL和Betts-Miller-Janjic CU计划一起运行时,在模拟这次大雨事件方面表现最佳。对所选配置进行评估,以评估该地区季风季节不同月份中发生的几场特大至特大降雨事件。与简单的Slab模型相比,通过在Noah方案中纳入详细的土地表面过程(涉及可预测的土壤水分演化),模型的性能得以提高。为了分析模型网格间距的影响,使用了两组缩减比例-(i)?1:3,全局对区域(G2R)比例和(ii)?1:9,全局对流允许比例(G2C)–受雇。结果表明,较高的缩小比例(G2C)会导致较高的可变性,因此在仿真中会出现较大的误差。因此,在本案例研究中,采用G2R作为模拟强降雨事件的合适选择。此外,与NCEP FiNaL(FNL)再分析数据相比,发现WRF模拟的降雨表现出较小的偏差。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号