...
首页> 外文期刊>Hydrology and Earth System Sciences >Quantifying the uncertainty in estimates of surface–atmosphere fluxes through joint evaluation of the SEBS and SCOPE models
【24h】

Quantifying the uncertainty in estimates of surface–atmosphere fluxes through joint evaluation of the SEBS and SCOPE models

机译:通过SEBS和SCOPE模型的联合评估来量化地表大气通量估算中的不确定性

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Accurate estimation of global evapotranspiration is considered to be of greatimportance due to its key role in the terrestrial and atmospheric waterbudget. Global estimation of evapotranspiration on the basis ofobservational data can only be achieved by using remote sensing. Severalalgorithms have been developed that are capable of estimating the dailyevapotranspiration from remote sensing data. Evaluation of remote sensingalgorithms in general is problematic because of differences in spatial andtemporal resolutions between remote sensing observations and fieldmeasurements. This problem can be solved in part by using soil-vegetation-atmosphere transfer (SVAT) models, because on the one hand these modelsprovide evapotranspiration estimations also under cloudy conditions and onthe other hand can scale between different temporal resolutions.In this paper, the Soil Canopy Observation, Photochemistry and Energy fluxes(SCOPE) model is used for the evaluation of the Surface Energy BalanceSystem (SEBS) model. The calibrated SCOPE model was employed to simulateremote sensing observations and to act as a validation tool. The advantagesof the SCOPE model in this validation are (a) the temporal continuity of thedata, and (b) the possibility of comparing different components of the energybalance. The SCOPE model was run using data from a whole growth season of amaize crop.It is shown that the original SEBS algorithm produces large uncertainties inthe turbulent flux estimations caused by parameterizations of the groundheat flux and sensible heat flux. In the original SEBS formulation thefractional vegetation cover is used to calculate the ground heat flux. Asthis variable saturates very fast for increasing leaf area index (LAI), the ground heat fluxis underestimated. It is shown that a parameterization based on LAI reducesthe estimation error over the season from RMSE = 25 W m?2 toRMSE = 18 W m?2. In the original SEBS formulation the roughnessheight for heat is only valid for short vegetation. An improvedparameterization was implemented in the SEBS algorithm for tall vegetation.This improved the correlation between the latent heat flux predicted by theSEBS and the SCOPE algorithm from ?0.05 to 0.69, and led to a decrease indifference from 123 to 94 W m?2 for the latent heatflux, with SEBS latent heat being consistently lower than the SCOPEreference. Lastly the diurnal stability of the evaporative fraction wasinvestigated.
机译:由于其在陆地和大气水预算中的关键作用,因此准确估算全球蒸发量被认为非常重要。基于观测数据的蒸散量的总体估算只能通过遥感来实现。已经开发了几种算法,这些算法能够根据遥感数据估算日蒸散量。由于遥感观测和现场测量之间在空间和时间分辨率上的差异,对遥感算法的评估通常存在问题。通过使用土壤-植被-大气迁移(SVAT)模型可以部分解决此问题,因为一方面这些模型还可以在多云条件下提供蒸散量估算,另一方面可以在不同的时间分辨率之间进行缩放。 本文利用土壤冠层观测,光化学和能量通量(SCOPE)模型对表面能平衡系统(SEBS)模型进行评估。校准后的SCOPE模型用于模拟遥感观测并充当验证工具。 SCOPE模型在此验证中的优点是(a)数据的时间连续性,以及(b)比较能量平衡的不同组成部分的可能性。 SCOPE模型是使用来自整个玉米农作物整个生长季节的数据运行的。 表明,最初的SEBS算法在由地热通量和显热通量的参数化引起的湍流通量估计中产生了很大的不确定性。在原始的SEBS公式中,分数植被覆盖率用于计算地面热通量。由于该变量非常快地饱和以增加叶面积指数(LAI),因此地面热通量被低估了。结果表明,基于LAI的参数化可以减小整个季节的估计误差,从RMSE = 25 W m ?2 到RMSE = 18 W m ?2 。在原始的SEBS公式中,热量的粗糙度高度仅对短植被有效。 SEBS算法对高大植被进行了改进的参数化,这将SEBS预测的潜热通量与SCOPE算法之间的相关性从0.050.05提升到了0.69,并且将差异从123 W降低到94 W m ?潜热通量为2 ,SEBS潜热始终低于SCOPE参考。最后,研究了蒸发级分的昼夜稳定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号