...
首页> 外文期刊>High temperature materials and processes >Study on Control of Inclusion Compositions in Tire Cord Steel by Low Basicity Top Slag
【24h】

Study on Control of Inclusion Compositions in Tire Cord Steel by Low Basicity Top Slag

机译:低碱度顶渣控制轮胎帘线钢中夹杂物成分的研究

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Top slag melting experiment was conducted in a silicon molybdenum furnace with tire cord steel billet. The influence of top slag composition on the plasticity of CaO–Al_(2)O_(3)–SiO_(2)–MgO inclusion and inclusion plasticization conditions was calculated by thermodynamic software FactSage. Use the thermodynamic calculation to guide the laboratory experiments to study slag compositions influence inclusions composition. Then industrial experiments were conducted based on the theoretical calculation and results of laboratory experiments. Scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS) were used to determine the morphology and composition of inclusions in steel. All studies show that in the CaO–Al_(2)O_(3)–SiO_(2)–10% MgO diagram, when CaO = 8–48%, SiO_(2)= 35–75%, Al_(2)O_(3)= 0–32%, inclusions are in the plastic area. When basicity of top slag is certain, Al_(2)O_(3)content in inclusions increases with the increase of Al_(2)O_(3)content in the slag, and the distribution of inclusions becomes scattered with the increase of Al_(2)O_(3)content in slag. Inclusion plasticization can be achieved when the binary basicities of top slag are 0.6, 0.8–1.2, 1.4 and corresponding w(Al_(2)O_(3))_(s)are 2–15%, 2–10%, <2%. According to industrial experimental results, when top slag basicity decreases from 1.5 to 0.67–0.9 and Al_(2)O_(3)content decreases below 10 wt%, the inclusion falls into plastic area. It is feasible in practice to control the CaO–Al_(2)O_(3)–SiO_(2)–MgO inclusions plastic through adjusting Al_(2)O_(3)content in slag.
机译:顶渣熔化实验是在带有轮胎帘线钢坯的硅钼炉中进行的。利用热力学软件FactSage计算了炉渣成分对CaO–Al_(2)O_(3)–SiO_(2)–MgO夹杂物及夹杂物塑化条件的影响。用热力学计算指导实验室实验研究炉渣成分对夹杂物成分的影响。然后根据理论计算和实验室实验结果进行了工业实验。扫描电子显微镜(SEM)和能量色散光谱(EDS)用于确定钢中夹杂物的形态和组成。所有研究都表明,在CaO–Al_(2)O_(3)–SiO_(2)–10%MgO图中,当CaO = 8–48%,SiO_(2)= 35–75%,Al_(2)O_ (3)= 0-32%,夹杂物位于塑料区域。当顶渣碱度确定时,夹杂物中Al_(2)O_(3)的含量随渣中Al_(2)O_(3)含量的增加而增加,夹杂物的分布随Al_( 2)O_(3)炉渣中的含量。当顶渣的二元碱度为0.6、0.8-1.2、1.4且相应的w(Al_(2)O_(3))_(s)为2-15%,2-10%,<2时,可以实现夹杂物增塑。 %。根据工业实验结果,当炉渣碱度从1.5降低到0.67-0.9且Al_(2)O_(3)含量降低到10 wt%以下时,夹杂物进入塑性区。在实践中,通过调节炉渣中的Al_(2)O_(3)含量来控制CaO–Al_(2)O_(3)–SiO_(2)–MgO夹杂物塑料是可行的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号