...
首页> 外文期刊>Hemijska industrija >Carboxylation of sodium 2-naphthoxide. Reinvestigation of the mechanism by means of a hybrid meta density functional theory method
【24h】

Carboxylation of sodium 2-naphthoxide. Reinvestigation of the mechanism by means of a hybrid meta density functional theory method

机译:2-萘氧基钠的羧化。通过混合亚密度泛函理论方法对机理进行重新研究

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Aromatic hydroxy acids, the compounds of large industrial importance, can be prepared in the Kolbe-Schmitt reaction, i.e. a carboxylation reaction of alkali metal phenoxides (MOPh) and naphthoxides (MONaph). On the basis of the experimental results two contradictory reaction mechanisms have been proposed: the one of direct carboxylation, and the other involving initial formation of the MOPh-CO2 or MONaph-CO2 complex. Previous theoretical investigations of the carboxylation reaction of sodium 2-naphthoxide, performed by means of the B3LYP method, confirmed the initial formation of the NaONaph-CO2 complex, and showed that the carbon of the CO2 moiety performs an electrophilic attack at C1 of the ring, leading to the formation of sodium 2-hydroxy-1-naphthoate (E1). Surprisingly, transition states for possible electrophilic attacks at C3 and C6 were not revealed, and the formation of other two products (E3 and E6) was explained by a number of consecutive rearrangements. In addition, this mechanism includes a reaction step with rather high activation energy. Since more sophisticated functionals are today available, the aim of this work is to reinvestigate the mechanism of the Kolbe-Schmitt reaction of NaONaph in all three positions (1, 3, and 6). Our investigations with the M062X method demonstrated that CO2 and NaONaph can spontaneously build two complexes: B (the one previously reported) and C. While B cannot be further transformed to yield the reaction products, the CO2 moiety in C takes perfect position for electrophilic attacks at all three sites of the ring. These attacks are realized via the transition states TS1, which lead to the formation of the new C-C bonds, and corresponding intermediates D. In the next, bimolecular reaction step two D intermediates exchange the protons adjacent to the CO2 groups. These intermolecular reaction steps require significantly lower activation energies in comparison to the intramolecular proton shift from C to O. The carboxylation reaction in the position 6 is both kinetically and thermodynamically unfavourable, whereas the pathways in the positions 1 and 3 are competitive. Pathway 1 requires the lowest activation energies, but E3 is significantly more stable than other two products. In accord with these findings are the experimental results which show that, at very low temperature (293 K) only E1 is formed at low yield, whereas the yields of E3 and E6 increase with the increasing temperature. Since the Kolbe-Schmitt reaction is experimentally performed at relatively high temperatures (around 500 K), the main product is thermodynamically most stable E6.
机译:可以在Kolbe-Schmitt反应,即碱金属酚盐(MOPh)和萘氧化物(MONaph)的羧化反应中制备具有重要工业价值的芳族羟基酸。根据实验结果,提出了两种相互矛盾的反应机理:一种是直接羧化反应,另一种涉及初始形成MOPh-CO2或MONaph-CO2配合物。以前通过B3LYP方法对2-萘氧基钠的羧化反应进行的理论研究证实了NaONaph-CO2配合物的最初形成,并表明CO2部分的碳在环的C1处发生亲电攻击,导致形成2-羟基-1-萘甲酸钠(E1)。出人意料的是,没有揭示在C3和C6可能发生亲电攻击的过渡态,并且通过多次连续重排解释了其他两种产物(E3和E6)的形成。另外,该机理包括具有相当高活化能的反应步骤。由于今天可以使用更复杂的功能,因此这项工作的目的是重新研究NaONaph在所有三个位置(1、3和6)的Kolbe-Schmitt反应机理。我们使用M062X方法进行的研究表明,CO2和NaONaph可以自发生成两个复合物:B(先前报道的一种)和C。虽然无法进一步转化B以产生反应产物,但C中的CO2部分处于亲电攻击的理想位置在环的所有三个位置。这些攻击是通过过渡态TS1实现的,过渡态TS1导致形成新的C-C键和相应的中间体D。在接下来的双分子反应步骤中,两个D中间体交换与CO2基团相邻的质子。与从C到O的分子内质子转移相比,这些分子间反应步骤所需的活化能要低得多。位置6的羧化反应在动力学和热力学上都是不利的,而位置1和3的途径却竞争激烈。途径1需要最低的活化能,但是E3比其他两种产物稳定得多。与这些发现一致的是,实验结果表明,在非常低的温度(293 K)下,仅以低收率形成E1,而随着温度的升高,E3和E6的收率增加。由于Kolbe-Schmitt反应是在相对较高的温度(约500 K)下通过实验进行的,因此主要产物是热力学最稳定的E6。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号