首页> 外文期刊>World Journal of Mechanics >Bending of a Tapered Rod: Modern Application and Experimental Test of Elastica Theory
【24h】

Bending of a Tapered Rod: Modern Application and Experimental Test of Elastica Theory

机译:锥形杆的弯曲:Elastica理论的现代应用和实验测试

获取原文
       

摘要

A tapered rod mounted at one end (base) and subject to a normal force at the other end (tip) is a fundamental structure of continuum mechanics that occurs widely at all size scales from radio towers to fishing rods to micro-electromechanical sensors. Although the bending of a uniform rod is well studied and gives rise to mathematical shapes described by elliptic integrals, no exact closed form solution to the nonlinear differential equations of static equilibrium is known for the deflection of a tapered rod. We report in this paper a comprehensive numerical analysis and experimental test of the exact theory of bending deformation of a tapered rod. Given the rod geometry and elastic modulus, the theory yields virtually all the geometric and physical features that an analyst, experimenter, or instrument designer might want as a function of impressed load, such as the exact curve of deformation (termed the elastica), maximum tip displacement, maximum tip deflection angle, distribution of curvature, and distribution of bending moment. Applied experimentally, the theory permits rapid estimation of the elastic modulus of a rod, which is not easily obtainable by other means. We have tested the theory by photographing the shapes of a set of flexible rods of different lengths and tapers subject to a range of impressed loads and using digital image analysis to extract the coordinates of the elastica curves. The extent of flexure in these experiments far exceeded the range of applicability of approximations that linearize the equations of equilibrium or neglect tapering of the rod. Agreement between the measured deflection curves and the exact theoretical predictions was excellent in all but several cases. In these exceptional cases, the nature of the anomalies provided important information regarding the deviation of the rods from an ideal Euler-Bernoulli cantilever, which thereby permitted us to model the deformation of the rods more accurately.
机译:安装在一端(基部)上并在另一端(尖端)上受到法向力的锥形杆是连续力学的基本结构,它在从无线电塔到钓鱼杆再到微机电传感器的各种尺寸范围内,都广泛存在。尽管对均匀杆的弯曲进行了充分的研究,并产生了用椭圆积分描述的数学形状,但对于锥形杆的挠度,尚无确切的静态平衡非线性微分方程封闭形式的解。我们在本文中报告了锥形杆弯曲变形的精确理论的综合数值分析和实验测试。给定杆的几何形状和弹性模量,该理论实际上产生了分析人员,实验人员或仪器设计人员可能想要的所有几何和物理特征,这些特征是所施加的载荷的函数,例如精确的变形曲线(称为弹性),最大尖端位移,最大尖端偏转角,曲率分布和弯矩分布。通过实验应用,该理论允许快速估算杆的弹性模量,而该弹性模量很难通过其他方式获得。我们通过拍摄一组不同长度和锥度的柔性杆的形状(经受一定范围的载荷)并使用数字图像分析提取弹性曲线的坐标来测试该理论。在这些实验中,挠曲的程度远远超出了使棒的平衡或忽略锥度方程线性化的近似值的适用范围。除了几种情况外,测得的挠曲曲线与精确的理论预测之间的一致性非常好。在这些例外情况下,异常的性质提供了有关杆与理想Euler-Bernoulli悬臂的偏离的重要信息,从而使我们能够更精确地建模杆的变形。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号