首页> 外文期刊>Water >Understanding the Temperature Variations and Thermal Structure of a Subtropical Deep River-Run Reservoir before and after Impoundment
【24h】

Understanding the Temperature Variations and Thermal Structure of a Subtropical Deep River-Run Reservoir before and after Impoundment

机译:了解亚热带深水河道蓄水前后的温度变化和热力结构

获取原文
           

摘要

A two-dimensional hydrodynamic CE-QUAL-W2 model was configured for a deep subtropical river-run reservoir, the Xiluodu Reservoir (XLDR), in China to simulate water temperature in the first two years of impoundment (2013–2014) using measured data as model input. It was calibrated using observed temperature profiles near the dam and the outflow temperatures. Observed daily temperatures at four gauging stations upstream or downstream of XLDR before (2000–2012) and after the impoundment (4 May 2013) were analyzed and fitted with a sine function representing seasonal temperature variation. The fitted annual temperature phase shifts showed no phase delay in XLDR area before the impoundment but revealed a phase delay about 17 days between outflow and inflow after the impoundment, which was not caused by the air temperature variation. The simulated temperatures verified a similar phase delay after the impoundment. The simulated temperatures, water ages, and vertical temperature gradients demonstrated an average metalimnetic deepening rate of 0.49 m/day (average inflow ~4500 m 3 /s) while the largest rate due to massive inflow (~15,000 m 3 /s) was 1.67 m/day. The W2 model was run under hypothetic scenarios of different inflow/outflow rates and outflow withdrawn elevations. The results revealed that greater inflow/outflow rate could lead to higher metalimnetic deepening rate and smaller outflow phase delay, while deeper outflow withdrawn could lead to deeper metalimnion and larger epilimnetic depth.
机译:针对中国深亚热带河道水库溪洛渡水库(XLDR),配置了二维水动力CE-QUAL-W2模型,以使用测量数据模拟水库蓄水的前两年(2013-2014年)的水温。作为模型输入。使用观察到的大坝附近温度曲线和流出温度对其进行校准。分析了在XLDR上游或下游(2000-2012年)和蓄水之后(2013年5月4日)之后四个测量站的每日温度,并拟合了代表季节温度变化的正弦函数。拟合的年温度相移显示,在蓄水之前,XLDR区域没有相位延迟,但是在蓄水后,流出和流入之间显示了约17天的相位延迟,这不是由气温变化引起的。模拟的温度证实了蓄水后的相似相位延迟。模拟的温度,水龄和垂直温度梯度显示平均金属磁性加深速率为0.49 m /天(平均流入量约4500 m 3 / s),而由于大量流入而产生的最大速率(约15,000 m 3 / s)为1.67米/天。 W2模型是在不同流入/流出速率和流出撤回高程的假设情况下运行的。结果表明,较大的流入/流出速率可以导致较高的金属磁化深化速率和较小的流出相位延迟,而更深的流出量可以导致较深的金属酰亚胺和较大的表观磁性深度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号