首页> 外文期刊>Water >Size Distribution, Surface Coverage, Water, Carbon, and Metal Storage of Thermokarst Lakes in the Permafrost Zone of the Western Siberia Lowland
【24h】

Size Distribution, Surface Coverage, Water, Carbon, and Metal Storage of Thermokarst Lakes in the Permafrost Zone of the Western Siberia Lowland

机译:西伯利亚低地多年冻土区热喀斯特湖的大小分布,表面覆盖,水,碳和金属储量

获取原文
           

摘要

Despite the importance of thermokarst (thaw) lakes of the subarctic zone in regulating greenhouse gas exchange with the atmosphere and the flux of metal pollutants and micro-nutrients to the ocean, the inventory of lake distribution and stock of solutes for the permafrost-affected zone are not available. We quantified the abundance of thermokarst lakes in the continuous, discontinuous, and sporadic permafrost zones of the western Siberian Lowland (WSL) using Landsat-8 scenes collected over the summers of 2013 and 2014. In a territory of 105 million ha, the total number of lakes >0.5 ha is 727,700, with a total surface area of 5.97 million ha, yielding an average lake coverage of 5.69% of the territory. Small lakes (0.5–1.0 ha) constitute about one third of the total number of lakes in the permafrost-bearing zone of WSL, yet their surface area does not exceed 2.9% of the total area of lakes in WSL. The latitudinal pattern of lake number and surface coverage follows the local topography and dominant landscape zones. The role of thermokarst lakes in dissolved organic carbon (DOC) and most trace element storage in the territory of WSL is non-negligible compared to that of rivers. The annual lake storage across the WSL of DOC, Cd, Pb, Cr, and Al constitutes 16%, 34%, 37%, 57%, and 73%, respectively, of their annual delivery by WSL rivers to the Arctic Ocean from the same territory. However, given that the concentrations of DOC and metals in the smallest lakes (<0.5 ha) are much higher than those in the medium and large lakes, the contribution of small lakes to the overall carbon and metal budget may be comparable to, or greater than, their contribution to the water storage. As such, observations at high spatial resolution (<0.5 ha) are needed to constrain the reservoirs and the mobility of carbon and metals in aquatic systems. To upscale the DOC and metal storage in lakes of the whole subarctic, the remote sensing should be coupled with hydrochemical measurements in aquatic systems of boreal plains.
机译:尽管北极地区的热喀斯特(融化)湖在调节温室气体与大气的交换以及金属污染物和微量营养素向海洋的通量方面很重要,但多年冻土影响区的湖泊分布和溶质存量却很重要。不可用。我们使用2013年和2014年夏季收集的Landsat-8景象量化了西伯利亚低地(WSL)连续,不连续和零星的多年冻土带中大量的喀斯特湖。在1.05亿公顷的土地上,总数> 0.5公顷的湖泊中有727,700公顷为湖泊,总表面积为597万公顷,平均湖泊覆盖率为5.69%。小湖(0.5-1.0公顷)约占WSL多年冻土带湖泊总数的三分之一,但其表面积不超过WSL湖泊总面积的2.9%。湖泊数量和地表覆盖度的纬度格局遵循当地地形和主要景观带。与河流相比,温水喀斯特湖在WSL领土内的溶解有机碳(DOC)和大多数微量元素存储中的作用不可忽略。 WSL从WSL河流向北冰洋的年交付量分别占DOC,Cd,Pb,Cr和Al的WSL的年度湖泊存储量的16%,34%,37%,57%和73%。同一地区。但是,考虑到最小湖泊(<0.5公顷)中的DOC和金属浓度远高于中大型湖泊中的DOC和金属浓度,因此小型湖泊对总体碳和金属预算的贡献可能与之相当或更高。比,他们对水的贡献。因此,需要以高空间分辨率(<0.5公顷)进行观测,以限制水生系统中的储集层以及碳和金属的迁移率。为了扩大整个亚北极湖泊中的DOC和金属储量,应将遥感与北方平原水生系统中的水化学测量结合起来。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号