首页> 外文期刊>Veins and Lymphatics >Neurofluids: A holistic approach to their physiology, interactive dynamics and clinical implications for neurological diseases
【24h】

Neurofluids: A holistic approach to their physiology, interactive dynamics and clinical implications for neurological diseases

机译:Neurofluids:一种整体方法来研究其生理学,互动动力学以及对神经系统疾病的临床意义

获取原文
       

摘要

There is increasing interest in understanding the physiology of the extracellular fluid compartments in the central nervous system and their dynamic interaction. Such interest has been in part prompted by a vigorous resurgence of the role of the venous system, the recent discoveries of the meningeal lymphatics, the brain waste removal mechanisms and their potential link to neurological diseases, such as idiopathic intracranial hypertension, Ménière’s disease, migraine, small vessel disease, and most neurodegenerative diseases. The rigid cranial cavity houses several space-competing material compartments: the brain parenchyma (BP) and four extracellular fluids, namely arterial, venous, cerebrospinal fluid (CSF) and interstitial fluid (ISF). During cardiac pulsations, the harmonious, temporal and spatial dynamic interaction of all these fluid compartments and the BP assures a constant intracranial volume at all times, consistent with the Monro-Kellie hypothesis. The dynamic interaction involves high-pressure input of arterial blood during systole and efflux of CSF into the spinal subarachnoid space (SSAS) followed by venous blood exiting directly into the vertebral and internal jugular veins towards the heart and intraventricular CSF displacing caudally towards the SSAS. Arterial pulsatile energy is transmitted to the BP that contributes to the smooth movement of fluids in and out of the brain. Perturbing any of these fluid compartments will alter the entire brain dynamics, potentially increase intracranial pressure, affect perfusion and hamper clearance capacity of metabolic waste. This review of all major extracellular fluid compartments within the brain, advocates a holistic approach to our understanding of the fluid dynamics, rather than focusing on a single compartment when analyzing neurological diseases. This approach may contribute to advance our comprehension of some common neurological disorders, paving the way to newer treatment options.
机译:人们越来越了解中枢神经系统中细胞外液区隔的生理学及其动态相互作用。引起这种兴趣的部分原因是,静脉系统的作用迅速复苏,脑膜淋巴瘤的最新发现,脑废物清除机制及其与神经系统疾病(如特发性颅内高压,梅尼埃病,偏头痛)的潜在联系,小血管疾病和大多数神经退行性疾病。坚硬的颅腔内有几个竞争空间的物质隔间:脑实质(BP)和四种细胞外液,即动脉,静脉,脑脊髓液(CSF)和组织液(ISF)。在心脏搏动过程中,所有这些流体腔室和BP的协调,时空动态相互作用确保了颅内体积始终保持恒定,这与Monro-Kellie假设相符。动态相互作用涉及在收缩期CSF的动脉血高压输入和流出到蛛网膜下腔(SSAS),然后静脉血直接进入椎体和颈内静脉并进入心脏,而脑室内CSF逐渐向SSAS尾部移位。动脉搏动能量被传输到BP,这有助于使流体平稳地流入和流出大脑。扰乱这些流体隔室中的任何一个都会改变整个大脑的动态,可能会增加颅内压,影响灌注并妨碍代谢废物的清除能力。本文对大脑中所有主要的细胞外液室进行了综述,主张采用一种整体方法来理解流体动力学,而不是在分析神经系统疾病时专注于单个室。这种方法可能有助于提高我们对一些常见神经系统疾病的理解,为新的治疗选择铺平道路。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号