...
首页> 外文期刊>Procedia CIRP >Enabling Wider Use of Magnesium Alloys for Lightweight Applications by Improving the Formability by Groove Pressing
【24h】

Enabling Wider Use of Magnesium Alloys for Lightweight Applications by Improving the Formability by Groove Pressing

机译:通过凹槽压制提高可成形性,从而使镁合金在轻质应用中得到更广泛的应用

获取原文
   

获取外文期刊封面封底 >>

       

摘要

In the last decade or so, severe plastic deformation (SPD) has been shown to be an effective means for the production of fine grained microstructure in magnesium alloys at relatively low temperatures while altering the material texture to improve its formability. SPD of sheet geometry is particularly attractive in order to encourage wider use of magnesium alloys for lightweight applications. In this study, the microstructure evolution of magnesium alloy AZ31 sheet in the groove pressing process was examined at different processing conditions. The average grain size of the material was reduced from 13.3μm to 1.9μm after 4 cycles of deformation under the condition of progressive decreasing temperature and specimen rotation between cycles. The final microstructure was observed to be homogenous in both the transverse and rolling directions consisting of fine grains of 0.6-1μm and a small fraction of coarser grains of 3-5μm. The average hardness of the material was increased from 62 to 91 Hv with a uniform distribution along the thickness direction. This study has demonstrated that groove pressing is a highly effective method for production of fine grained microstructures in magnesium sheet using the technique of progressive decreasing temperature while alternate specimen rotation is necessary to prevent premature failure of the material.
机译:在过去的十年左右的时间里,严重的塑性变形(SPD)已被证明是在相对较低的温度下在镁合金中产生细晶粒微结构,同时改变材料织构以提高其可成形性的有效手段。薄板几何形状的SPD特别吸引人,以鼓励镁合金在轻型应用中的广泛使用。在这项研究中,研究了镁合金AZ31板材在压制过程中在不同加工条件下的组织演变。在逐渐降低温度和样品在两次循环之间旋转的条件下,经过四个循环的变形后,材料的平均晶粒尺寸从13.3μm减小到1.9μm。观察到最终的微观结构在横向和轧制方向上均一,由0.6-1μm的细晶粒和一小部分3-5μm的较粗晶粒组成。材料的平均硬度从62 Hv增加到91 Hv,并沿厚度方向均匀分布。这项研究表明,采用逐渐降低温度的技术,凹槽压制是一种在镁片材中生产细晶粒微结构的高效方法,同时必须交替旋转试样以防止材料过早损坏。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号