...
首页> 外文期刊>Thermal science >Novel methods for axial fan impeller geometry analysis and experimental investigations of the generated swirl turbulent flow
【24h】

Novel methods for axial fan impeller geometry analysis and experimental investigations of the generated swirl turbulent flow

机译:轴流风机叶轮几何分析的新方法及产生的旋流湍流实验研究

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Geometry analysis of the axial fan impeller, experimentally obtained operating characteristics and experimental investigations of the turbulent swirl flow generated behind the impeller are presented in this paper. Formerly designed and manufactured, axial fan impeller blade geometry (originally designed by Prof. Dr-Ing. Z. Proti??) has been digitized using a threedimensional (3D) scanner. In parallel, the same impeller has been modeled by beta version software for modeling axial turbomachines, based on modified classical calculation. These results were compared. Then, the axial fan operating characteristics were measured on the standardized test rig in the Laboratory for Hydraulic Machinery and Energy Systems, Faculty of Mechanical Engineering, University of Belgrade. Optimum blade impeller position was determined on the basis of these results. Afterwards, the impeller with optimum angle, without outlet vanes, was positioned in a circular pipe. Rotational speed has been varied in the range from 500 till 2500rpm. Reynolds numbers generated in this way, calculated for axial velocity component, were in the range from 0,8?105 till 6?105. LDA (Laser Doppler Anemometry) measurements and stereo PIV (Particle Image Velocimetry) measurements of the 3D velocity field in the swirl turbulent fluid flow behind the axial fan have been performed for each regime. Obtained results point out extraordinary complexity of the structure of generated 3D turbulent velocity fields.
机译:本文介绍了轴流风机叶轮的几何分析,实验获得的运行特性以及叶轮后产生的湍流旋流的实验研究。以前设计和制造的轴向风扇叶轮叶片几何形状(最初由Dr.Ing。Z. Proti ??教授设计)已使用三维(3D)扫描仪进行了数字化处理。同时,基于改进的经典计算,相同的叶轮已经通过Beta版软件进行了建模,以对轴向涡轮机进行建模。比较了这些结果。然后,在贝尔格莱德大学机械工程学院液压机械和能源系统实验室的标准化测试台上测量了轴流风扇的工作特性。基于这些结果确定了最佳叶片叶轮位置。然后,将具有最佳角度的叶轮(没有出口叶片)放置在圆形管道中。旋转速度在500至2500rpm的范围内变化。以轴向速度分量计算的以这种方式产生的雷诺数在0,8?105到6?105之间。对于每种情况,已经对轴流风扇后面的涡流湍流中的3D速度场进行了LDA(激光多普勒风速测量)测量和立体PIV(粒子图像测速)测量。获得的结果指出了生成的3D湍流速度场的结构异常复杂。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号