...
首页> 外文期刊>The Open Fuel Cells Journal >The High-Density Hydrogen Carrier Intercalation in Graphane-Like Nanostructures, Relevance to its On-Board Storage in Fuel-Cell-Powered Vehicles
【24h】

The High-Density Hydrogen Carrier Intercalation in Graphane-Like Nanostructures, Relevance to its On-Board Storage in Fuel-Cell-Powered Vehicles

机译:类似于石墨烯的纳米结构中的高密度氢载体嵌入,与其在燃料电池汽车中的车载存储有关

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Theoretical (thermodynamic) and experimental backgrounds are considered for developing a much simpler, more technological and effective method (in comparison with the known megabar compression dynamic and static methods) of producing a high-density solid molecular (“reversible”) hydrogen carrier by means of hydrogen intercalation (at the cost of the hydrogen association energy) in carbonaceous nanomaterials (between graphane-like layers) at relevant temperatures and pressures. As is shown, one of the processes of chemisorption of hydrogen in carbonaceous nanomaterials may be related to formation of graphane-like (carbohydride-like) complexes and/or multilayer graphane-like nanostructures. In this connection, some aspects of the graphene/graphane problem are considered, as well. By using gravimetric and electron microscopy data, the density values (pH = 0.7±0.2 g(H2)/CM3(H2), and p*H = 0.28±0.08 g(H2)/CM3(system) - the “volumetric” capacity) of the intercalated solid molecular (“reversible”) hydrogen (of a high purity) in graphane-like nanofibers (≥ 15 mass % H2 – the “gravimetric” capacity) have been defined. It is a much more acceptable, safe and efficient technology, in comparison with the current technologies of composite vessels with high hydrogen pressure (about 80 MPa) and the current space cryogenic technologies of hydrogen on-board storage in fuel-cell-powered vehicles. It exceeds and/or corresponds to the known U.S. DOE requirements-targets for 2015, with respect to the hydrogen capacities, safety, reversibility and puirity.
机译:考虑了理论(热力学)和实验背景,以开发一种更简单,更技术和有效的方法(与已知的兆巴压缩动态和静态方法相比),该方法通过以下方法生产高密度固体分子(“可逆”)氢载体碳纳米材料(在石墨烷样层之间)在相关温度和压力下的氢插层(以氢缔合能为代价)。如图所示,氢在碳质纳米材料中化学吸附的过程之一可能与形成石墨烷样(碳氢化合物样)复合物和/或多层石墨烷样纳米结构有关。在这方面,还考虑了石墨烯/石墨烯问题的某些方面。通过使用重量分析和电子显微镜数据,密度值(pH = 0.7±0.2 g(H2)/ CM3(H2)和p * H = 0.28±0.08 g(H2)/ CM3(系统)-“体积”容量)定义了在石墨烷状纳米纤维(≥15质量%H2 –“重力”容量)中插入的(高纯度)固体分子氢(“可逆”)。与当前具有高氢气压力(约80 MPa)的复合容器技术和当前在燃料电池驱动的车辆中车载氢存储的空间低温技术相比,它是一种更加可接受,安全和高效的技术。在氢气容量,安全性,可逆性和易冲性方面,它超过和/或对应于2015年美国DOE已知的要求目标。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号