首页> 外文期刊>The Journal of general physiology >Voltage Clamp Fluorimetry Reveals a Novel Outer Pore Instability in a Mammalian Voltage-gated Potassium Channel
【24h】

Voltage Clamp Fluorimetry Reveals a Novel Outer Pore Instability in a Mammalian Voltage-gated Potassium Channel

机译:电压钳荧光法揭示了哺乳动物电压门控钾通道中的新型外孔不稳定性

获取原文
           

摘要

Voltage-gated potassium (Kv) channel gating involves complex structural rearrangements that regulate the ability of channels to conduct K+ ions. Fluorescence-based approaches provide a powerful technique to directly report structural dynamics underlying these gating processes in Shaker Kv channels. Here, we apply voltage clamp fluorimetry, for the first time, to study voltage sensor motions in mammalian Kv1.5 channels. Despite the homology between Kv1.5 and the Shaker channel, attaching TMRM or PyMPO fluorescent probes to substituted cysteine residues in the S3–S4 linker of Kv1.5 (M394C-V401C) revealed unique and unusual fluorescence signals. Whereas the fluorescence during voltage sensor movement in Shaker channels was monoexponential and occurred with a similar time course to ionic current activation, the fluorescence report of Kv1.5 voltage sensor motions was transient with a prominent rapidly dequenching component that, with TMRM at A397C (equivalent to Shaker A359C), represented 36 ± 3% of the total signal and occurred with a τ of 3.4 ± 0.6 ms at +60 mV ( n = 4). Using a number of approaches, including 4-AP drug block and the ILT triple mutation, which dissociate channel opening from voltage sensor movement, we demonstrate that the unique dequenching component of fluorescence is associated with channel opening. By regulating the outer pore structure using raised (99 mM) external K+ to stabilize the conducting configuration of the selectivity filter, or the mutations W472F (equivalent to Shaker W434F) and H463G to stabilize the nonconducting (P-type inactivated) configuration of the selectivity filter, we show that the dequenching of fluorescence reflects rapid structural events at the selectivity filter gate rather than the intracellular pore gate.
机译:电压门控钾(Kv)通道门控涉及复杂的结构重排,可调节通道传导K +离子的能力。基于荧光的方法提供了一种强大的技术,可以直接报告Shaker Kv通道中这些选通过程背后的结构动力学。在这里,我们首次应用电压钳荧光法来研究哺乳动物Kv1.5通道中的电压传感器运动。尽管Kv1.5和Shaker通道之间具有同源性,但将TMRM或PyMPO荧光探针连接到Kv1.5(M394C-V401C)的S3–S4接头中的半胱氨酸残基上时,却发现了独特和异常的荧光信号。摇床通道中电压传感器运动期间的荧光是单指数的,并且发生的时间与离子电流激活时间相似,而Kv1.5电压传感器运动的荧光报告是瞬态的,具有明显的快速去猝灭成分,TMRM在A397C(等效到Shaker A359C),代表总信号的36±3%,并且在+60 mV(n = 4)时的τ为3.4±0.6 ms。使用包括4-AP药物阻滞和ILT三重突变在内的多种方法,它们将通道打开与电压传感器的运动分离,我们证明了荧光的独特去猝灭成分与通道打开有关。通过使用升高的(99 mM)外部K +来调节外孔结构以稳定选择性过滤器的导电构型,或者使用突变W472F(等效于Shaker W434F)和H463G来稳定非导电性(P型失活)构型过滤器,我们表明荧光的猝灭反映了选择性过滤器门而不是细胞内孔门的快速结构事件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号