首页> 外文期刊>The journal of clinical investigation >Cortical astrocytes rewire somatosensory cortical circuits for peripheral neuropathic pain
【24h】

Cortical astrocytes rewire somatosensory cortical circuits for peripheral neuropathic pain

机译:皮质星形胶质细胞重塑体感皮质回路,用于周围神经性疼痛

获取原文
       

摘要

Long-term treatments to ameliorate peripheral neuropathic pain that includes mechanical allodynia are limited. While glial activation and altered nociceptive transmission within the spinal cord are associated with the pathogenesis of mechanical allodynia, changes in cortical circuits also accompany peripheral nerve injury and may represent additional therapeutic targets. Dendritic spine plasticity in the S1 cortex appears within days following nerve injury; however, the underlying cellular mechanisms of this plasticity and whether it has a causal relationship to allodynia remain unsolved. Furthermore, it is not known whether glial activation occurs within the S1 cortex following injury or whether it contributes to this S1 synaptic plasticity. Using in vivo 2-photon imaging with genetic and pharmacological manipulations of murine models, we have shown that sciatic nerve ligation induces a re-emergence of immature metabotropic glutamate receptor 5 (mGluR5) signaling in S1 astroglia, which elicits spontaneous somatic Ca~(2+) transients, synaptogenic thrombospondin 1 (TSP-1) release, and synapse formation. This S1 astrocyte reactivation was evident only during the first week after injury and correlated with the temporal changes in S1 extracellular glutamate levels and dendritic spine turnover. Blocking the astrocytic mGluR5-signaling pathway suppressed mechanical allodynia, while activating this pathway in the absence of any peripheral injury induced long-lasting (>1 month) allodynia. We conclude that reawakened astrocytes are a key trigger for S1 circuit rewiring and that this contributes to neuropathic mechanical allodynia.
机译:减轻包括机械性异常性疼痛在内的周围神经性疼痛的长期治疗是有限的。虽然脊髓内神经胶质的活化和伤害性传递的改变与机械性异常性疼痛的发病机制有关,但皮质回路的改变也伴随着周围神经损伤,可能代表了其他治疗靶点。在神经损伤后的几天内,S1皮质的树突状脊柱可塑性就出现了。然而,这种可塑性的潜在细胞机制以及它与异常性疼痛是否具有因果关系仍未得到解决。此外,尚不知道神经胶质激活是否在损伤后发生在S1皮质内,或者是否有助于这种S1突触可塑性。使用小鼠模型的遗传和药理学操作的体内2光子成像,我们发现坐骨神经结扎可诱导S1星形胶质细胞中未成熟的代谢型谷氨酸受体5(mGluR5)信号重新出现,从而引起自发的体细胞Ca〜(2 +)瞬态,突触性血小板反应蛋白1(TSP-1)释放和突触形成。这种S1星形胶质细胞的激活仅在受伤后的第一周才明显,并且与S1细胞外谷氨酸水平和树突棘更新的时间变化相关。阻断星形胶质细胞的mGluR5信号通路可抑制机械性异常性疼痛,而在没有任何外周损伤引起的持续性(> 1个月)异常性疼痛的情况下激活该途径。我们得出的结论是,醒来的星形胶质细胞是S1电路重新布线的关键触发因素,并且这有助于神经性机械性异常性疼痛。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号