...
首页> 外文期刊>The Cryosphere >What drives basin scale spatial variability of snowpack properties in northern Colorado?
【24h】

What drives basin scale spatial variability of snowpack properties in northern Colorado?

机译:是什么驱动了科罗拉多州北部积雪性质的流域尺度空间变异性?

获取原文
   

获取外文期刊封面封底 >>

       

摘要

This study uses a combination of field measurements and Natural ResourceConservation Service (NRCS) operational snow data to understand the driversof snow density and snow water equivalent (SWE) variability at the basinscale (100s to 1000s km2). Historic snow course snowpack densityobservations were analyzed within a multiple linear regression snow densitymodel to estimate SWE directly from snow depth measurements. Snow surveyswere completed on or about 1 April 2011 and 2012 and combined with NRCSoperational measurements to investigate the spatial variability of SWE nearpeak snow accumulation. Bivariate relations and multiple linear regressionmodels were developed to understand the relation of snow density and SWEwith terrain variables (derived using a geographic information system(GIS)). Snow density variability was best explained by day of year, snowdepth, UTM Easting, and elevation. Calculation of SWE directly from snowdepth measurement using the snow density model has strong statisticalperformance, and model validation suggests the model is transferable toindependent data within the bounds of the original data set. This pathway ofestimating SWE directly from snow depth measurement is useful whenevaluating snowpack properties at the basin scale, where many time-consumingmeasurements of SWE are often not feasible. A comparison with a previouslydeveloped snow density model shows that calibrating a snow density model toa specific basin can provide improvement of SWE estimation at this scale, andshould be considered for future basin scale analyses. During both water year(WY) 2011 and 2012, elevation and location (UTM Easting and/or UTM Northing)were the most important SWE model variables, suggesting that orographicprecipitation and storm track patterns are likely driving basin scale SWEvariability. Terrain curvature was also shown to be an important variable,but to a lesser extent at the scale of interest.
机译:这项研究结合了野外测量和自然资源保护服务(NRCS)的降雪数据,以了解流域尺度(100s至1000s km 2 )的雪密度和雪水当量(SWE)变异性的驱动因素。在多元线性回归雪密度模型中分析了历史雪道积雪密度观测值,以直接从雪深测量中估算SWE。积雪调查已于2011年4月1日或2012年4月1日前后完成,并与NRCS的运行测量结果相结合,以调查SWE近峰积雪的空间变异性。开发了双变量关系和多元线性回归模型以了解雪密度和SWE与地形变量的关系(使用地理信息系统(GIS)得出)。最好用一年中的一天,积雪深度,UTM东移和海拔来解释积雪密度的变化。使用积雪密度模型直接从积雪深度测量中计算SWE具有很强的统计性能,并且模型验证表明该模型可在原始数据集的范围内转移到独立数据。当在流域尺度上评估积雪性质时,这种直接从积雪深度测量中估算SWE的途径非常有用,因为在这种情况下,许多耗时的SWE测量往往不可行。与先前开发的雪密度模型的比较表明,针对特定流域校准雪密度模型可以改善此尺度下的SWE估计,并且应考虑用于将来的流域规模分析。在2011年和2012年这两个水年期间,海拔和位置(UTM东边和/或UTM北边)是最重要的SWE模型变量,这表明地形降水和风暴路径模式可能会驱动流域尺度SWE的变化。地形曲率也被证明是一个重要的变量,但在感兴趣的范围内程度较小。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号