首页> 外文期刊>The Cryosphere Discussions >Glacier change along West Antarctica's Marie Byrd Land Sector and links to inter-decadal atmosphere–ocean variability
【24h】

Glacier change along West Antarctica's Marie Byrd Land Sector and links to inter-decadal atmosphere–ocean variability

机译:南极西部玛丽·伯德(Marie Byrd)土地部门的冰川变化,并与年代际大气-海洋多变性有关

获取原文
       

摘要

Over the past 20?years satellite remote sensing has captured significant downwasting of glaciers that drain the West Antarctic Ice Sheet into the ocean, particularly across the Amundsen Sea Sector. Along the neighbouring Marie Byrd Land Sector, situated west of Thwaites Glacier to Ross Ice Shelf, glaciological change has been only sparsely monitored. Here, we use optical satellite imagery to track grounding-line migration along the Marie Byrd Land Sector between 2003 and 2015, and compare observed changes with ICESat and CryoSat-2-derived surface elevation and thickness change records. During the observational period, 33?% of the grounding line underwent retreat, with no significant advance recorded over the remainder of the ~ 2200?km long coastline. The greatest retreat rates were observed along the 650?km-long Getz Ice Shelf, further west of which only minor retreat occurred. The relative glaciological stability west of Getz Ice Shelf can be attributed to a divergence of the Antarctic Circumpolar Current from the continental-shelf break at 135 sup°/sup W, coincident with a transition in the morphology of the continental shelf. Along Getz Ice Shelf, grounding-line retreat reduced by 68?% during the CryoSat-2 era relative to earlier observations. Climate reanalysis data imply that wind-driven upwelling of Circumpolar Deep Water would have been reduced during this later period, suggesting that the observed slowdown was a response to reduced oceanic forcing. However, lack of comprehensive oceanographic and bathymetric information proximal to Getz Ice Shelf's grounding zone make it difficult to assess the role of intrinsic glacier dynamics, or more complex ice-sheet–ocean interactions, in moderating this slowdown. Collectively, our findings underscore the importance of spatial and inter-decadal variability in atmosphere and ocean interactions in moderating glaciological change around Antarctica.
机译:在过去的20年中,卫星遥感技术已大大减少了冰川的消融,这些冰川将西南极冰原排入海洋,尤其是横跨阿蒙森海域。沿着位于Thwaites冰川以西至Ross Ice Shelf的邻近的Marie Byrd土地部门,仅对稀疏的冰川变化进行了监测。在这里,我们使用光学卫星图像跟踪了2003年至2015年间沿Marie Byrd土地部门的地线迁移,并将观测到的变化与ICESat和CryoSat-2得出的表面高程和厚度变化记录进行了比较。在观测期内,有33%的接地线进行了后退,在2200公里长的海岸线的其余部分没有明显的进展。在650公里长的盖茨冰架上观察到最大的退缩速度,在更西边的地方只有很小的退缩。格茨冰架以西的相对冰川稳定性可以归因于南极洲极地流与西欧大陆架在135 °处破裂的发散,这与大陆架形态的转变相吻合。与早期的观测结果相比,在CryoSat-2时代,沿着盖兹冰架沿线的撤退减少了68%。气候再分析数据表明,在此后期,风极深水的上升流将会减少,这表明观测到的减速是对海洋强迫减少的一种反应。但是,由于缺乏靠近盖茨冰架着陆区的全面的海洋学和测深信息,因此难以评估固有的冰川动力学或更复杂的冰盖-海洋相互作用在减缓这种减速方面的作用。总的来说,我们的发现强调了大气和海洋相互作用的空间和年代际变化在调节南极洲周围冰川变化中的重要性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号