...
首页> 外文期刊>The Cryosphere >Geodetic mass balance record with rigorous uncertainty estimates deducedfrom aerial photographs and lidar data – Case study from Drangaj?kull icecap, NW Iceland
【24h】

Geodetic mass balance record with rigorous uncertainty estimates deducedfrom aerial photographs and lidar data – Case study from Drangaj?kull icecap, NW Iceland

机译:大地质量平衡记录,从航空照片和激光雷达数据推导出严格的不确定性估计–冰岛西北部Drangaj?kull冰盖的案例研究

获取原文
           

摘要

In this paper we describe how recent high-resolution digital elevationmodels (DEMs) can be used to extract glacier surface DEMs from old aerialphotographs and to evaluate the uncertainty of the mass balance recordderived from the DEMs. We present a case study for Drangaj?kull ice cap,NW Iceland. This ice cap covered an area of 144?km2 when it wassurveyed with airborne lidar in 2011. Aerial photographs spanning all ormost of the ice cap are available from survey flights in 1946, 1960, 1975,1985, 1994 and 2005. All ground control points used to constrain theorientation of the aerial photographs were obtained from the high-resolutionlidar DEM. The lidar DEM was also used to estimate errors of the extractedphotogrammetric DEMs in ice- and snow-free areas, at nunataks and outside theglacier margin. The derived errors of each DEM were used to constrain aspherical semivariogram model, which along with the derived errors in ice- and snow-free areas were used as inputs into 1000 sequential Gaussiansimulations (SGSims). The simulations were used to estimate the possible biasin the entire glaciated part of the DEM and the 95?% confidence level ofthis bias. This results in bias correction varying in magnitude between 0.03?m (in 1975) and 1.66?m (in 1946) and uncertaintyvalues between ±0.21?m (in 2005) and ±1.58?m (in 1946). Error estimation methods based onmore simple proxies would typically yield 2–4 times larger error estimates.The aerial photographs used were acquired between late June and earlyOctober. An additional seasonal bias correction was therefore estimated using adegree-day model to obtain the volume change between the start of 2glaciological years (1 October).This correction was largest for the 1960 DEM, corresponding to an average elevation change of ?3.5?m or approx. three-quarters of the volume change between the 1960 and the 1975 DEMs.The total uncertainty of the derived mass balance record is dominated by uncertainty in the volume changes caused by uncertainties of the SGSim bias correction,the seasonal bias correction and the interpolation of glacier surface where data are lacking.The record shows a glacier-wide mass balance rate of Ḃ? =??0.26?±?0.04?m?w.e.?a?1 for the entire study period(1946–2011). We observe significant decadal variability including periods ofmass gain, peaking in 1985–1994 with Ḃ??=?0.27?±?0.11?m?w.e.?a?1. There is a strikingdifference when Ḃ ?is calculatedseparately for the western and eastern halves of Drangaj?kull, with areduction of eastern part on average ?~??3 times faster than thewestern part. Our study emphasizes the need for applying rigorousgeostatistical methods for obtaining uncertainty estimates of geodetic massbalance, the importance of seasonal corrections of DEMs from glaciers withhigh mass turnover and the risk of extrapolating mass balance record fromone glacier to another even over short distances.
机译:在本文中,我们描述了如何使用最新的高分辨率数字高程模型(DEM)从旧的航拍照片中提取冰川表面DEM,并评估从DEM得出的质量平衡记录的不确定性。我们目前以冰岛西北部Drangaj?kull冰帽为例。该冰盖在2011年用机载激光雷达进行测量时覆盖了144?km 2 的面积。从1946年,1960年,1975年,1985年, 1994年和2005年。用于约束航空照片方向的所有地面控制点均从高分辨率激光雷达DEM获得。激光雷达DEM还用于估计在无冰和无雪地区,努纳塔克地区和冰川边缘以外地区提取的摄影测绘DEM的误差。每个DEM的派生误差用于约束非球面半变异函数模型,该模型与无冰和无雪地区的派生误差一起用作1000个顺序高斯模拟(SGSims)的输入。用模拟法估算了DEM整个冰川部分的可能偏差以及该偏差的95%置信度。这导致偏差校正的幅度在0.03?m(在1975年)和1.66?m(在1946年)之间变化,不确定性值在±0.21?m(在2005年)和±1.58?m(在1946年)之间变化。基于更简单的代理的误差估计方法通常会产生2-4倍的误差估计。所使用的航空照片是在6月下旬至10月初之间获得的。因此,使用度日模型估算了额外的季节性偏差校正,以获得2个冰川年份(10月1日)开始之间的体积变化。该校正在1960年DEM中最大,对应于平均海拔变化为3.5μm或大约1960年和1975年DEM之间的体积变化的四分之三。导出的质量平衡记录的总不确定性由SGSim偏差校正,季节性偏差校正和冰川插值的不确定性引起的体积变化的不确定性决定。记录显示冰川范围内的质量平衡率为 Ḃ ?在整个研究期间(1946年至2011年)=?0.26?±?0.04?m?w.e.?a ?1 。我们观察到包括年代际增益在内的年代际变化,在1985-1994年达到峰值, Ḃ ?? =?0.27?±?0.11?m?we?a ?1 。对Drangaj?kull的西半部和东半部分别计算 Ḃ ?时,存在显着差异,东部的平均减小速度比西方快3〜3倍。部分。我们的研究强调需要应用严格的地统计学方法来获得大地质量平衡的不确定性估计,从具有大质量周转的冰川中对DEM进行季节性校正的重要性以及将质量平衡记录从一个冰川推断到另一冰川的风险,即使是在短距离内。

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号