首页> 外文期刊>Polymers >Molecular Dynamics Simulations of Molecular Diffusion Equilibrium and Breakdown Mechanism of Oil-Impregnated Pressboard with Water Impurity
【24h】

Molecular Dynamics Simulations of Molecular Diffusion Equilibrium and Breakdown Mechanism of Oil-Impregnated Pressboard with Water Impurity

机译:含油杂质的含油纸板的分子扩散平衡和分解机理的分子动力学模拟

获取原文
           

摘要

The water molecule migration and aggregation behaviors in oil-impregnated pressboard are investigated by molecular dynamics simulations in combination with Monte Carlo molecular simulation technique. The free energy and phase diagram of H 2 O-dodecylbenzene (DDB) and H 2 O-cellulose mixtures are calculated by Monte Carlo technique combined with the modified Flory-Huggins model, demonstrating that H 2 O molecules can hardly dissolved with infinitesimal content in cellulose system at temperature lower than 650 K, based on which the oil/cellulose layered structure with water impurity representing three-phase coexistence in oil-impregnated pressboard are modeled and performed for molecular dynamics. The molecular dynamics of H 2 O/DDB/cellulose three-phase mixture simulating oil-paper insulating system with H 2 O impurity indicates that DDB molecules can thermally intrude into the cellulose-water interface so as to separate the water phase and cellulose fiber. The first-principles electronic structure calculations for local region of H 2 O/DDB interface show that H 2 O molecules can introduce bound states to trap electrons and acquire negative charges, so that they will obtain sufficient energy from applied electric field to break DDB molecular chain by collision, which are verified by subsequent molecular dynamics simulations of H 2 O ? /DDB interface model. The electric breakdown mechanism under higher than 100 kV/m electric field is presented based on the further first-principles calculations of the produced carbonized fragments being dissolved and diffusing in DDB phase. The resulted broken DDB fragments will introduce impurity band between valence and conduction bands of DDB system, evidently decreasing bandgap as to that of conducting materials in their existence space. The conductance channel of these carbonized DDB fragments will eventually be formed to initiate the avalanche breakdown process by the cycle-feedback of injected charge carriers with carbonized channels.
机译:结合蒙特卡洛分子模拟技术,通过分子动力学模拟研究了含油压纸板中水分子的迁移和聚集行为。通过蒙特卡罗技术和改进的Flory-Huggins模型结合计算出H 2 O-十二烷基苯(DDB)和H 2 O-纤维素混合物的自由能和相图,表明H 2 O分子几乎不能以极小含量溶解。在低于650 K的温度下的纤维素体系中,基于油/纤维素层状结构的水杂质代表了油浸纸板中的三相共存,并进行了分子动力学模拟。 H 2 O / DDB /纤维素三相混合物模拟具有H 2 O杂质的油纸绝缘系统的分子动力学表明,DDB分子可以热侵入纤维素-水界面,从而分离出水相和纤维素纤维。 H 2 O / DDB界面局部区域的第一性原理电子结构计算表明,H 2 O分子可以引入键合态以俘获电子并获得负电荷,因此它们将从施加的电场中获得足够的能量来破坏DDB分子H 2 O 3的分子动力学模拟验证了碰撞产生的链。 / DDB接口模型。在进一步的第一性原理计算基础上,分析了生成的碳化物在DDB相中溶解和扩散的机理,提出了高于100 kV / m电场的击穿机理。断裂的DDB碎片将在DDB系统的价带和导带之间引入杂质带,从而明显减小了带电材料在其存在空间中的带隙。这些碳化的DDB碎片的电导通道将最终形成,以通过注入的载流子与碳化通道的循环反馈来引发雪崩击穿过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号