...
首页> 外文期刊>Propulsion and Power Research >Local vibrations and lift performance of low Reynolds number airfoil
【24h】

Local vibrations and lift performance of low Reynolds number airfoil

机译:低雷诺数翼型的局部振动和升力性能

获取原文
           

摘要

The 2D incompressible Navier-Stokes equations are solved based on the finite volume method and dynamic mesh technique is used to carry out partial fluid structure interaction. The local flexible structure (hereinafter termed as flexible structure) vibrates in a single mode located on the upper surface of the airfoil. The Influence of vibration frequency and amplitude are examined and the corresponding fluid flow characteristics are investigated which add complexity to the inherent problem in unsteady flow. The study is conducted for flow over NACA0012 airfoil at 600≤ Re ≤3000 at a low angle of attack. Vibration of flexible structure induces a secondary vortex which modifies the pressure distribution and lift performance of the airfoil. At some moderate vibration amplitude, frequency synchronization or lock-in phenomenon occurs when the vibration frequency is close to the characteristic frequency of rigid airfoil. Evolution and shedding of vortices corresponding to the deformation of flexible structure depends on the Reynolds number. In the case of Re ≤1000, the deformation of flexible structure is considered in-phase with the vortex shedding i.e., increasing maximum lift is linked with the positive deformation of flexible structure. At Re =1500 a phase shift of about 1/ π exists while they are out-of-phase at Re 1500. Moreover, the oscillation amplitude of lift coefficient increases with increasing vibration amplitude for Re ≤1500 while it decreases with increasing vibration amplitude for Re 1500. As a result of frequency lock-in, the average lift coefficient is increased with increasing vibration amplitude for all investigated Reynolds numbers ( Re ). The maximum increase in the average lift coefficient is 19.72% within the range of investigated parameters.
机译:基于有限体积法求解了二维不可压缩的Navier-Stokes方程,并采用动态网格技术进行了部分流体与结构的相互作用。局部柔性结构(以下称为柔性结构)以单一模式振动,位于翼型件的上表面。研究了振动频率和振幅的影响,并研究了相应的流体流动特性,这增加了非稳态流动固有问题的复杂性。该研究是针对低攻角在600≤Re≤3000的NACA0012翼型上进行的流动。柔性结构的振动会引起二次涡旋,从而改变翼型的压力分布和升力性能。在某个中等振幅时,当振动频率接近刚性机翼的特征频率时,就会发生频率同步或锁定现象。对应于柔性结构变形的涡旋的演化和脱落取决于雷诺数。在Re≤1000的情况下,柔性结构的变形被认为与涡流同相,即,最大升力的增加与柔性结构的正变形有关。在Re = 1500时,存在大约1 /π的相移,而在Re> 1500时它们存在异相。此外,当Re≤1500时,升力系数的振动幅度随振动幅度的增加而增加,而当Re> 1500时,其振幅随振动幅度的增加而减小。频率锁定的结果是,对于所有研究的雷诺数(Re),平均升力系数都随着振动幅度的增加而增加。在所研究的参数范围内,平均升力系数的最大增加为19.72%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号